# HG changeset patch # User Henri Sivonen # Date 1714462184 0 # Node ID 1db2ef126a6a8555dbf50345e16492c977b42e92 # Parent a545e84b3674c4878f2e618b7bce23058f2ac690 Bug 1882209 - Update encoding_rs to 0.8.34 to deal with rustc changes. r=glandium,supply-chain-reviewers Differential Revision: https://phabricator.services.mozilla.com/D207167 diff --git a/.cargo/config.in b/.cargo/config.in --- a/.cargo/config.in +++ b/.cargo/config.in @@ -35,31 +35,31 @@ git = "https://github.com/gfx-rs/wgpu" rev = "f71a1bc736fde37509262ca03e91d8f56a13aeb5" replace-with = "vendored-sources" [source."git+https://github.com/glandium/warp?rev=4af45fae95bc98b0eba1ef0db17e1dac471bb23d"] git = "https://github.com/glandium/warp" rev = "4af45fae95bc98b0eba1ef0db17e1dac471bb23d" replace-with = "vendored-sources" +[source."git+https://github.com/hsivonen/any_all_workaround?rev=7fb1b7034c9f172aade21ee1c8554e8d8a48af80"] +git = "https://github.com/hsivonen/any_all_workaround" +rev = "7fb1b7034c9f172aade21ee1c8554e8d8a48af80" +replace-with = "vendored-sources" + [source."git+https://github.com/hsivonen/chardetng?rev=3484d3e3ebdc8931493aa5df4d7ee9360a90e76b"] git = "https://github.com/hsivonen/chardetng" rev = "3484d3e3ebdc8931493aa5df4d7ee9360a90e76b" replace-with = "vendored-sources" [source."git+https://github.com/hsivonen/chardetng_c?rev=ed8a4c6f900a90d4dbc1d64b856e61490a1c3570"] git = "https://github.com/hsivonen/chardetng_c" rev = "ed8a4c6f900a90d4dbc1d64b856e61490a1c3570" replace-with = "vendored-sources" -[source."git+https://github.com/hsivonen/packed_simd?rev=e588ceb568878e1a3156ea9ce551d5b63ef0cdc4"] -git = "https://github.com/hsivonen/packed_simd" -rev = "e588ceb568878e1a3156ea9ce551d5b63ef0cdc4" -replace-with = "vendored-sources" - [source."git+https://github.com/jfkthame/mapped_hyph.git?rev=c7651a0cffff41996ad13c44f689bd9cd2192c01"] git = "https://github.com/jfkthame/mapped_hyph.git" rev = "c7651a0cffff41996ad13c44f689bd9cd2192c01" replace-with = "vendored-sources" [source."git+https://github.com/mozilla-spidermonkey/jsparagus?rev=64ba08e24749616de2344112f226d1ef4ba893ae"] git = "https://github.com/mozilla-spidermonkey/jsparagus" rev = "64ba08e24749616de2344112f226d1ef4ba893ae" diff --git a/Cargo.lock b/Cargo.lock --- a/Cargo.lock +++ b/Cargo.lock @@ -80,16 +80,25 @@ dependencies = [ name = "android_system_properties" version = "0.1.5" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "819e7219dbd41043ac279b19830f2efc897156490d7fd6ea916720117ee66311" dependencies = [ "libc", ] +[[package]] +name = "any_all_workaround" +version = "0.1.0" +source = "git+https://github.com/hsivonen/any_all_workaround?rev=7fb1b7034c9f172aade21ee1c8554e8d8a48af80#7fb1b7034c9f172aade21ee1c8554e8d8a48af80" +dependencies = [ + "cfg-if 1.0.0", + "version_check", +] + [[package]] name = "anyhow" version = "1.0.69" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "224afbd727c3d6e4b90103ece64b8d1b67fbb1973b1046c2281eed3f3803f800" [[package]] name = "app_services_logger" @@ -1431,22 +1440,22 @@ dependencies = [ "encoding_rs", "nserror", "nsstring", "xmldecl", ] [[package]] name = "encoding_rs" -version = "0.8.33" +version = "0.8.34" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "7268b386296a025e474d5140678f75d6de9493ae55a5d709eeb9dd08149945e1" +checksum = "b45de904aa0b010bce2ab45264d0631681847fa7b6f2eaa7dab7619943bc4f59" dependencies = [ + "any_all_workaround", "cfg-if 1.0.0", - "packed_simd", ] [[package]] name = "enum-primitive-derive" version = "0.2.2" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "c375b9c5eadb68d0a6efee2999fef292f45854c3444c86f09d8ab086ba942b0e" dependencies = [ @@ -3901,25 +3910,16 @@ checksum = "8d91edf4fbb970279443471345a4e8c491bf05bb283b3e6c88e4e606fd8c181b" [[package]] name = "oxilangtag-ffi" version = "0.1.0" dependencies = [ "nsstring", "oxilangtag", ] -[[package]] -name = "packed_simd" -version = "0.3.9" -source = "git+https://github.com/hsivonen/packed_simd?rev=e588ceb568878e1a3156ea9ce551d5b63ef0cdc4#e588ceb568878e1a3156ea9ce551d5b63ef0cdc4" -dependencies = [ - "cfg-if 1.0.0", - "num-traits", -] - [[package]] name = "parking_lot" version = "0.11.2" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "7d17b78036a60663b797adeaee46f5c9dfebb86948d1255007a1d6be0271ff99" dependencies = [ "instant", "lock_api", diff --git a/Cargo.toml b/Cargo.toml --- a/Cargo.toml +++ b/Cargo.toml @@ -154,22 +154,22 @@ rure = { path = "third_party/rust/rure" } # 0.31.1 but without rust-cssparser#342. # TODO: Remove these, and just use v0.31.1 once bug 1836219 lands # (which will get syn 2 into the tree). cssparser = { path = "third_party/rust/cssparser" } cssparser-macros = { path = "third_party/rust/cssparser-macros" } # Other overrides +any_all_workaround = { git = "https://github.com/hsivonen/any_all_workaround", rev = "7fb1b7034c9f172aade21ee1c8554e8d8a48af80" } chardetng = { git = "https://github.com/hsivonen/chardetng", rev="3484d3e3ebdc8931493aa5df4d7ee9360a90e76b" } chardetng_c = { git = "https://github.com/hsivonen/chardetng_c", rev="ed8a4c6f900a90d4dbc1d64b856e61490a1c3570" } coremidi = { git = "https://github.com/chris-zen/coremidi.git", rev="fc68464b5445caf111e41f643a2e69ccce0b4f83" } firefox-on-glean = { path = "toolkit/components/glean/api" } libudev-sys = { path = "dom/webauthn/libudev-sys" } -packed_simd = { git = "https://github.com/hsivonen/packed_simd", rev = "e588ceb568878e1a3156ea9ce551d5b63ef0cdc4" } midir = { git = "https://github.com/mozilla/midir.git", rev = "519e651241e867af3391db08f9ae6400bc023e18" } # warp 0.3.3 + https://github.com/seanmonstar/warp/pull/1007 warp = { git = "https://github.com/glandium/warp", rev = "4af45fae95bc98b0eba1ef0db17e1dac471bb23d" } # application-services overrides to make updating them all simpler. interrupt-support = { git = "https://github.com/mozilla/application-services", rev = "86c84c217036c12283d19368867323a66bf35883" } sql-support = { git = "https://github.com/mozilla/application-services", rev = "86c84c217036c12283d19368867323a66bf35883" } sync15 = { git = "https://github.com/mozilla/application-services", rev = "86c84c217036c12283d19368867323a66bf35883" } diff --git a/config/makefiles/rust.mk b/config/makefiles/rust.mk --- a/config/makefiles/rust.mk +++ b/config/makefiles/rust.mk @@ -260,17 +260,17 @@ export COREAUDIO_SDK_PATH=$(IPHONEOS_SDK export IPHONEOS_SDK_DIR PATH := $(topsrcdir)/build/macosx:$(PATH) endif endif ifndef RUSTC_BOOTSTRAP RUSTC_BOOTSTRAP := mozglue_static,qcms ifdef MOZ_RUST_SIMD -RUSTC_BOOTSTRAP := $(RUSTC_BOOTSTRAP),encoding_rs,packed_simd +RUSTC_BOOTSTRAP := $(RUSTC_BOOTSTRAP),encoding_rs,any_all_workaround endif export RUSTC_BOOTSTRAP endif target_rust_ltoable := force-cargo-library-build $(ADD_RUST_LTOABLE) target_rust_nonltoable := force-cargo-test-run force-cargo-program-build ifdef MOZ_PGO_RUST diff --git a/supply-chain/audits.toml b/supply-chain/audits.toml --- a/supply-chain/audits.toml +++ b/supply-chain/audits.toml @@ -596,16 +596,29 @@ who = "Mike Hommey "] +description = "Workaround for bad LLVM codegen for boolean reductions on 32-bit ARM" +homepage = "https://docs.rs/any_all_workaround/" +documentation = "https://docs.rs/any_all_workaround/" +readme = "README.md" +license = "MIT OR Apache-2.0" +repository = "https://github.com/hsivonen/any_all_workaround" + +[dependencies] +cfg-if = "1.0" + +[build-dependencies] +version_check = "0.9" diff --git a/third_party/rust/packed_simd/LICENSE-APACHE b/third_party/rust/any_all_workaround/LICENSE-APACHE rename from third_party/rust/packed_simd/LICENSE-APACHE rename to third_party/rust/any_all_workaround/LICENSE-APACHE diff --git a/third_party/rust/packed_simd/LICENSE-MIT b/third_party/rust/any_all_workaround/LICENSE-MIT rename from third_party/rust/packed_simd/LICENSE-MIT rename to third_party/rust/any_all_workaround/LICENSE-MIT diff --git a/third_party/rust/any_all_workaround/LICENSE-MIT-QCMS b/third_party/rust/any_all_workaround/LICENSE-MIT-QCMS new file mode 100644 --- /dev/null +++ b/third_party/rust/any_all_workaround/LICENSE-MIT-QCMS @@ -0,0 +1,21 @@ +qcms +Copyright (C) 2009-2024 Mozilla Corporation +Copyright (C) 1998-2007 Marti Maria + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the "Software"), +to deal in the Software without restriction, including without limitation +the rights to use, copy, modify, merge, publish, distribute, sublicense, +and/or sell copies of the Software, and to permit persons to whom the Software +is furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in +all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. diff --git a/third_party/rust/any_all_workaround/README.md b/third_party/rust/any_all_workaround/README.md new file mode 100644 --- /dev/null +++ b/third_party/rust/any_all_workaround/README.md @@ -0,0 +1,13 @@ +# any_all_workaround + +This is a workaround for bad codegen ([Rust bug](https://github.com/rust-lang/portable-simd/issues/146), [LLVM bug](https://github.com/llvm/llvm-project/issues/50466)) for the `any()` and `all()` reductions for NEON-backed SIMD vectors on 32-bit ARM. On other platforms these delegate to `any()` and `all()` in `core::simd`. + +The plan is to abandon this crate once the LLVM bug is fixed or `core::simd` works around the LLVM bug. + +The code is forked from the [`packed_simd` crate](https://raw.githubusercontent.com/hsivonen/packed_simd/d938e39bee9bc5c222f5f2f2a0df9e53b5ce36ae/src/codegen/reductions/mask/arm.rs). + +This crate requires Nightly Rust as it depends on the `portable_simd` feature. + +# License + +`MIT OR Apache-2.0`, since that's how `packed_simd` is licensed. (The ARM intrinsics Rust version workaround is from qcms, see LICENSE-MIT-QCMS.) diff --git a/third_party/rust/any_all_workaround/build.rs b/third_party/rust/any_all_workaround/build.rs new file mode 100644 --- /dev/null +++ b/third_party/rust/any_all_workaround/build.rs @@ -0,0 +1,7 @@ +extern crate version_check as rustc; + +fn main() { + if rustc::is_min_version("1.78.0").unwrap_or(false) { + println!("cargo:rustc-cfg=stdsimd_split"); + } +} diff --git a/third_party/rust/any_all_workaround/src/lib.rs b/third_party/rust/any_all_workaround/src/lib.rs new file mode 100644 --- /dev/null +++ b/third_party/rust/any_all_workaround/src/lib.rs @@ -0,0 +1,110 @@ +// This code began as a fork of +// https://raw.githubusercontent.com/rust-lang/packed_simd/d938e39bee9bc5c222f5f2f2a0df9e53b5ce36ae/src/codegen/reductions/mask/arm.rs +// which didn't have a license header on the file, but Cargo.toml said "MIT OR Apache-2.0". +// See LICENSE-MIT and LICENSE-APACHE. + +#![no_std] +#![feature(portable_simd)] +#![cfg_attr( + all( + stdsimd_split, + target_arch = "arm", + target_endian = "little", + target_feature = "neon", + target_feature = "v7" + ), + feature(stdarch_arm_neon_intrinsics) +)] +#![cfg_attr( + all( + not(stdsimd_split), + target_arch = "arm", + target_endian = "little", + target_feature = "neon", + target_feature = "v7" + ), + feature(stdsimd) +)] + +use cfg_if::cfg_if; +use core::simd::mask16x8; +use core::simd::mask32x4; +use core::simd::mask8x16; + +cfg_if! { + if #[cfg(all(target_arch = "arm", target_endian = "little", target_feature = "neon", target_feature = "v7"))] { + use core::simd::mask8x8; + use core::simd::mask16x4; + use core::simd::mask32x2; + macro_rules! arm_128_v7_neon_impl { + ($all:ident, $any:ident, $id:ident, $half:ident, $vpmin:ident, $vpmax:ident) => { + #[inline] + pub fn $all(s: $id) -> bool { + use core::arch::arm::$vpmin; + use core::mem::transmute; + unsafe { + union U { + halves: ($half, $half), + vec: $id, + } + let halves = U { vec: s }.halves; + let h: $half = transmute($vpmin(transmute(halves.0), transmute(halves.1))); + h.all() + } + } + #[inline] + pub fn $any(s: $id) -> bool { + use core::arch::arm::$vpmax; + use core::mem::transmute; + unsafe { + union U { + halves: ($half, $half), + vec: $id, + } + let halves = U { vec: s }.halves; + let h: $half = transmute($vpmax(transmute(halves.0), transmute(halves.1))); + h.any() + } + } + } + } + } else { + macro_rules! arm_128_v7_neon_impl { + ($all:ident, $any:ident, $id:ident, $half:ident, $vpmin:ident, $vpmax:ident) => { + #[inline(always)] + pub fn $all(s: $id) -> bool { + s.all() + } + #[inline(always)] + pub fn $any(s: $id) -> bool { + s.any() + } + } + } + } +} + +arm_128_v7_neon_impl!( + all_mask8x16, + any_mask8x16, + mask8x16, + mask8x8, + vpmin_u8, + vpmax_u8 +); +arm_128_v7_neon_impl!( + all_mask16x8, + any_mask16x8, + mask16x8, + mask16x4, + vpmin_u16, + vpmax_u16 +); +arm_128_v7_neon_impl!( + all_mask32x4, + any_mask32x4, + mask32x4, + mask32x2, + vpmin_u32, + vpmax_u32 +); diff --git a/third_party/rust/encoding_rs/Cargo.toml b/third_party/rust/encoding_rs/Cargo.toml --- a/third_party/rust/encoding_rs/Cargo.toml +++ b/third_party/rust/encoding_rs/Cargo.toml @@ -6,18 +6,19 @@ # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2018" +rust-version = "1.36" name = "encoding_rs" -version = "0.8.33" +version = "0.8.34" authors = ["Henri Sivonen "] description = "A Gecko-oriented implementation of the Encoding Standard" homepage = "https://docs.rs/encoding_rs/" documentation = "https://docs.rs/encoding_rs/" readme = "README.md" keywords = [ "encoding", "web", @@ -31,23 +32,23 @@ categories = [ "internationalization", ] license = "(Apache-2.0 OR MIT) AND BSD-3-Clause" repository = "https://github.com/hsivonen/encoding_rs" [profile.release] lto = true +[dependencies.any_all_workaround] +version = "0.1.0" +optional = true + [dependencies.cfg-if] version = "1.0" -[dependencies.packed_simd] -version = "0.3.9" -optional = true - [dependencies.serde] version = "1.0" optional = true [dev-dependencies.bincode] version = "1.0" [dev-dependencies.serde_derive] @@ -69,15 +70,9 @@ fast-legacy-encode = [ "fast-hanja-encode", "fast-kanji-encode", "fast-gb-hanzi-encode", "fast-big5-hanzi-encode", ] less-slow-big5-hanzi-encode = [] less-slow-gb-hanzi-encode = [] less-slow-kanji-encode = [] -simd-accel = [ - "packed_simd", - "packed_simd/into_bits", -] - -[badges.travis-ci] -repository = "hsivonen/encoding_rs" +simd-accel = ["any_all_workaround"] diff --git a/third_party/rust/encoding_rs/README.md b/third_party/rust/encoding_rs/README.md --- a/third_party/rust/encoding_rs/README.md +++ b/third_party/rust/encoding_rs/README.md @@ -162,50 +162,36 @@ wrappers. * [C++](https://github.com/hsivonen/recode_cpp) ## Optional features There are currently these optional cargo features: ### `simd-accel` -Enables SIMD acceleration using the nightly-dependent `packed_simd` crate. +Enables SIMD acceleration using the nightly-dependent `portable_simd` standard +library feature. This is an opt-in feature, because enabling this feature _opts out_ of Rust's guarantees of future compilers compiling old code (aka. "stability story"). Currently, this has not been tested to be an improvement except for these -targets: +targets and enabling the `simd-accel` feature is expected to break the build +on other targets: * x86_64 * i686 * aarch64 * thumbv7neon If you use nightly Rust, you use targets whose first component is one of the above, and you are prepared _to have to revise your configuration when updating Rust_, you should enable this feature. Otherwise, please _do not_ enable this feature. -_Note!_ If you are compiling for a target that does not have 128-bit SIMD -enabled as part of the target definition and you are enabling 128-bit SIMD -using `-C target_feature`, you need to enable the `core_arch` Cargo feature -for `packed_simd` to compile a crates.io snapshot of `core_arch` instead of -using the standard-library copy of `core::arch`, because the `core::arch` -module of the pre-compiled standard library has been compiled with the -assumption that the CPU doesn't have 128-bit SIMD. At present this applies -mainly to 32-bit ARM targets whose first component does not include the -substring `neon`. - -The encoding_rs side of things has not been properly set up for POWER, -PowerPC, MIPS, etc., SIMD at this time, so even if you were to follow -the advice from the previous paragraph, you probably shouldn't use -the `simd-accel` option on the less mainstream architectures at this -time. - Used by Firefox. ### `serde` Enables support for serializing and deserializing `&'static Encoding`-typed struct fields using [Serde][1]. [1]: https://serde.rs/ @@ -376,18 +362,19 @@ It is a goal to support the latest stabl the version of Rust that's used for Firefox Nightly. At this time, there is no firm commitment to support a version older than what's required by Firefox, and there is no commitment to treat MSRV changes as semver-breaking, because this crate depends on `cfg-if`, which doesn't appear to treat MSRV changes as semver-breaking, so it would be useless for this crate to treat MSRV changes as semver-breaking. -As of 2021-02-04, MSRV appears to be Rust 1.36.0 for using the crate and +As of 2024-04-04, MSRV appears to be Rust 1.36.0 for using the crate and 1.42.0 for doc tests to pass without errors about the global allocator. +With the `simd-accel` feature, the MSRV is even higher. ## Compatibility with rust-encoding A compatibility layer that implements the rust-encoding API on top of encoding_rs is [provided as a separate crate](https://github.com/hsivonen/encoding_rs_compat) (cannot be uploaded to crates.io). The compatibility layer was originally written with the assuption that Firefox would need it, but it is not currently @@ -441,20 +428,27 @@ To regenerate the generated code: - [x] Implement the rust-encoding API in terms of encoding_rs. - [x] Add SIMD acceleration for Aarch64. - [x] Investigate the use of NEON on 32-bit ARM. - [ ] ~Investigate Björn Höhrmann's lookup table acceleration for UTF-8 as adapted to Rust in rust-encoding.~ - [x] Add actually fast CJK encode options. - [ ] ~Investigate [Bob Steagall's lookup table acceleration for UTF-8](https://github.com/BobSteagall/CppNow2018/blob/master/FastConversionFromUTF-8/Fast%20Conversion%20From%20UTF-8%20with%20C%2B%2B%2C%20DFAs%2C%20and%20SSE%20Intrinsics%20-%20Bob%20Steagall%20-%20C%2B%2BNow%202018.pdf).~ - [x] Provide a build mode that works without `alloc` (with lesser API surface). -- [ ] Migrate to `std::simd` once it is stable and declare 1.0. +- [x] Migrate to `std::simd` ~once it is stable and declare 1.0.~ +- [ ] Migrate `unsafe` slice access by larger types than `u8`/`u16` to `align_to`. ## Release Notes +### 0.8.34 + +* Use the `portable_simd` nightly feature of the standard library instead of the `packed_simd` crate. Only affects the `simd-accel` optional nightly feature. +* Internal documentation improvements and minor code improvements around `unsafe`. +* Added `rust-version` to `Cargo.toml`. + ### 0.8.33 * Use `packed_simd` instead of `packed_simd_2` again now that updates are back under the `packed_simd` name. Only affects the `simd-accel` optional nightly feature. ### 0.8.32 * Removed `build.rs`. (This removal should resolve false positives reported by some antivirus products. This may break some build configurations that have opted out of Rust's guarantees against future build breakage.) * Internal change to what API is used for reinterpreting the lane configuration of SIMD vectors. diff --git a/third_party/rust/encoding_rs/src/ascii.rs b/third_party/rust/encoding_rs/src/ascii.rs --- a/third_party/rust/encoding_rs/src/ascii.rs +++ b/third_party/rust/encoding_rs/src/ascii.rs @@ -46,71 +46,87 @@ cfg_if! { #[allow(dead_code)] #[inline(always)] fn likely(b: bool) -> bool { b } } } +// Safety invariants for masks: data & mask = 0 for valid ASCII or basic latin utf-16 + // `as` truncates, so works on 32-bit, too. #[allow(dead_code)] pub const ASCII_MASK: usize = 0x8080_8080_8080_8080u64 as usize; // `as` truncates, so works on 32-bit, too. #[allow(dead_code)] pub const BASIC_LATIN_MASK: usize = 0xFF80_FF80_FF80_FF80u64 as usize; #[allow(unused_macros)] macro_rules! ascii_naive { ($name:ident, $src_unit:ty, $dst_unit:ty) => { + /// Safety: src and dst must have len_unit elements and be aligned + /// Safety-usable invariant: will return Some() when it fails + /// to convert. The first value will be a u8 that is > 127. #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { // Yes, manually omitting the bound check here matters // a lot for perf. for i in 0..len { + // Safety: len invariant used here let code_unit = *(src.add(i)); + // Safety: Upholds safety-usable invariant here if code_unit > 127 { return Some((code_unit, i)); } + // Safety: len invariant used here *(dst.add(i)) = code_unit as $dst_unit; } return None; } }; } #[allow(unused_macros)] macro_rules! ascii_alu { ($name:ident, + // safety invariant: src/dst MUST be u8 $src_unit:ty, $dst_unit:ty, + // Safety invariant: stride_fn must consume and produce two usizes, and return the index of the first non-ascii when it fails $stride_fn:ident) => { + /// Safety: src and dst must have len elements, src is valid for read, dst is valid for + /// write + /// Safety-usable invariant: will return Some() when it fails + /// to convert. The first value will be a u8 that is > 127. #[cfg_attr(feature = "cargo-clippy", allow(never_loop, cast_ptr_alignment))] #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let mut offset = 0usize; // This loop is only broken out of as a `goto` forward loop { + // Safety: until_alignment becomes the number of bytes we need to munch until we are aligned to usize let mut until_alignment = { // Check if the other unit aligns if we move the narrower unit // to alignment. // if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() { // ascii_to_ascii let src_alignment = (src as usize) & ALU_ALIGNMENT_MASK; let dst_alignment = (dst as usize) & ALU_ALIGNMENT_MASK; if src_alignment != dst_alignment { + // Safety: bails early and ends up in the naïve branch where usize-alignment doesn't matter break; } (ALU_ALIGNMENT - src_alignment) & ALU_ALIGNMENT_MASK // } else if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { // ascii_to_basic_latin // let src_until_alignment = (ALIGNMENT - ((src as usize) & ALIGNMENT_MASK)) & ALIGNMENT_MASK; // if (dst.add(src_until_alignment) as usize) & ALIGNMENT_MASK != 0 { // break; @@ -129,74 +145,104 @@ macro_rules! ascii_alu { // Moving pointers to alignment seems to be a pessimization on // x86_64 for operations that have UTF-16 as the internal // Unicode representation. However, since it seems to be a win // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except // mixed results when encoding from UTF-16 and since x86 and // x86_64 should be using SSE2 in due course, keeping the move // to alignment here. It would be good to test on more ARM CPUs // and on real MIPS and POWER hardware. + // + // Safety: This is the naïve code once again, for `until_alignment` bytes while until_alignment != 0 { let code_unit = *(src.add(offset)); if code_unit > 127 { + // Safety: Upholds safety-usable invariant here return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; + // Safety: offset is the number of bytes copied so far offset += 1; until_alignment -= 1; } let len_minus_stride = len - ALU_STRIDE_SIZE; loop { + // Safety: num_ascii is known to be a byte index of a non-ascii byte due to stride_fn's invariant if let Some(num_ascii) = $stride_fn( + // Safety: These are known to be valid and aligned since we have at + // least ALU_STRIDE_SIZE data in these buffers, and offset is the + // number of elements copied so far, which according to the + // until_alignment calculation above will cause both src and dst to be + // aligned to usize after this add src.add(offset) as *const usize, dst.add(offset) as *mut usize, ) { offset += num_ascii; + // Safety: Upholds safety-usable invariant here by indexing into non-ascii byte return Some((*(src.add(offset)), offset)); } + // Safety: offset continues to be the number of bytes copied so far, and + // maintains usize alignment for the next loop iteration offset += ALU_STRIDE_SIZE; + // Safety: This is `offset > len - stride. This loop will continue as long as + // `offset <= len - stride`, which means there are `stride` bytes to still be read. if offset > len_minus_stride { break; } } } break; } + + // Safety: This is the naïve code, same as ascii_naive, and has no requirements + // other than src/dst being valid for the the right lens while offset < len { + // Safety: len invariant used here let code_unit = *(src.add(offset)); if code_unit > 127 { + // Safety: Upholds safety-usable invariant here return Some((code_unit, offset)); } + // Safety: len invariant used here *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! basic_latin_alu { ($name:ident, + // safety invariant: use u8 for src/dest for ascii, and u16 for basic_latin $src_unit:ty, $dst_unit:ty, + // safety invariant: stride function must munch ALU_STRIDE_SIZE*size(src_unit) bytes off of src and + // write ALU_STRIDE_SIZE*size(dst_unit) bytes to dst $stride_fn:ident) => { + /// Safety: src and dst must have len elements, src is valid for read, dst is valid for + /// write + /// Safety-usable invariant: will return Some() when it fails + /// to convert. The first value will be a u8 that is > 127. #[cfg_attr( feature = "cargo-clippy", allow(never_loop, cast_ptr_alignment, cast_lossless) )] #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let mut offset = 0usize; // This loop is only broken out of as a `goto` forward loop { + // Safety: until_alignment becomes the number of bytes we need to munch from src/dest until we are aligned to usize + // We ensure basic-latin has the same alignment as ascii, starting with ascii since it is smaller. let mut until_alignment = { // Check if the other unit aligns if we move the narrower unit // to alignment. // if ::core::mem::size_of::<$src_unit>() == ::core::mem::size_of::<$dst_unit>() { // ascii_to_ascii // let src_alignment = (src as usize) & ALIGNMENT_MASK; // let dst_alignment = (dst as usize) & ALIGNMENT_MASK; // if src_alignment != dst_alignment { @@ -232,66 +278,89 @@ macro_rules! basic_latin_alu { // Moving pointers to alignment seems to be a pessimization on // x86_64 for operations that have UTF-16 as the internal // Unicode representation. However, since it seems to be a win // on ARM (tested ARMv7 code running on ARMv8 [rpi3]), except // mixed results when encoding from UTF-16 and since x86 and // x86_64 should be using SSE2 in due course, keeping the move // to alignment here. It would be good to test on more ARM CPUs // and on real MIPS and POWER hardware. + // + // Safety: This is the naïve code once again, for `until_alignment` bytes while until_alignment != 0 { let code_unit = *(src.add(offset)); if code_unit > 127 { + // Safety: Upholds safety-usable invariant here return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; + // Safety: offset is the number of bytes copied so far offset += 1; until_alignment -= 1; } let len_minus_stride = len - ALU_STRIDE_SIZE; loop { if !$stride_fn( + // Safety: These are known to be valid and aligned since we have at + // least ALU_STRIDE_SIZE data in these buffers, and offset is the + // number of elements copied so far, which according to the + // until_alignment calculation above will cause both src and dst to be + // aligned to usize after this add src.add(offset) as *const usize, dst.add(offset) as *mut usize, ) { break; } + // Safety: offset continues to be the number of bytes copied so far, and + // maintains usize alignment for the next loop iteration offset += ALU_STRIDE_SIZE; + // Safety: This is `offset > len - stride. This loop will continue as long as + // `offset <= len - stride`, which means there are `stride` bytes to still be read. if offset > len_minus_stride { break; } } } break; } + // Safety: This is the naïve code once again, for leftover bytes while offset < len { + // Safety: len invariant used here let code_unit = *(src.add(offset)); if code_unit > 127 { + // Safety: Upholds safety-usable invariant here return Some((code_unit, offset)); } + // Safety: len invariant used here *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! latin1_alu { + // safety invariant: stride function must munch ALU_STRIDE_SIZE*size(src_unit) bytes off of src and + // write ALU_STRIDE_SIZE*size(dst_unit) bytes to dst ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_fn:ident) => { + /// Safety: src and dst must have len elements, src is valid for read, dst is valid for + /// write #[cfg_attr( feature = "cargo-clippy", allow(never_loop, cast_ptr_alignment, cast_lossless) )] #[inline(always)] pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { let mut offset = 0usize; // This loop is only broken out of as a `goto` forward loop { + // Safety: until_alignment becomes the number of bytes we need to munch from src/dest until we are aligned to usize + // We ensure the UTF-16 side has the same alignment as the Latin-1 side, starting with Latin-1 since it is smaller. let mut until_alignment = { if ::core::mem::size_of::<$src_unit>() < ::core::mem::size_of::<$dst_unit>() { // unpack let src_until_alignment = (ALU_ALIGNMENT - ((src as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; if (dst.wrapping_add(src_until_alignment) as usize) & ALU_ALIGNMENT_MASK != 0 @@ -308,373 +377,485 @@ macro_rules! latin1_alu { != 0 { break; } dst_until_alignment } }; if until_alignment + ALU_STRIDE_SIZE <= len { + // Safety: This is the naïve code once again, for `until_alignment` bytes while until_alignment != 0 { let code_unit = *(src.add(offset)); *(dst.add(offset)) = code_unit as $dst_unit; + // Safety: offset is the number of bytes copied so far offset += 1; until_alignment -= 1; } let len_minus_stride = len - ALU_STRIDE_SIZE; loop { $stride_fn( + // Safety: These are known to be valid and aligned since we have at + // least ALU_STRIDE_SIZE data in these buffers, and offset is the + // number of elements copied so far, which according to the + // until_alignment calculation above will cause both src and dst to be + // aligned to usize after this add src.add(offset) as *const usize, dst.add(offset) as *mut usize, ); + // Safety: offset continues to be the number of bytes copied so far, and + // maintains usize alignment for the next loop iteration offset += ALU_STRIDE_SIZE; + // Safety: This is `offset > len - stride. This loop will continue as long as + // `offset <= len - stride`, which means there are `stride` bytes to still be read. if offset > len_minus_stride { break; } } } break; } + // Safety: This is the naïve code once again, for leftover bytes while offset < len { + // Safety: len invariant used here let code_unit = *(src.add(offset)); *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } } }; } #[allow(unused_macros)] macro_rules! ascii_simd_check_align { ( $name:ident, $src_unit:ty, $dst_unit:ty, + // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_both_aligned:ident, + // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_src_aligned:ident, + // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_dst_aligned:ident, + // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_neither_aligned:ident ) => { + /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. + /// + /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being + /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let mut offset = 0usize; + // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; // XXX Should we first process one stride unconditionally as unaligned to // avoid the cost of the branchiness below if the first stride fails anyway? // XXX Should we just use unaligned SSE2 access unconditionally? It seems that // on Haswell, it would make sense to just use unaligned and not bother // checking. Need to benchmark older architectures before deciding. let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK; + // Safety: checking whether src is aligned if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 { + // Safety: Checking whether dst is aligned if dst_masked == 0 { loop { + // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments if !$stride_both_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride { break; } } } else { loop { + // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments if !$stride_src_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride { break; } } } } else { if dst_masked == 0 { loop { + // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments if !$stride_dst_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride { break; } } } else { loop { + // Safety: We're valid to read/write SIMD_STRIDE_SIZE elements and have the appropriate alignments if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride { break; } } } } } while offset < len { + // Safety: uses len invariant here and below let code_unit = *(src.add(offset)); if code_unit > 127 { + // Safety: upholds safety-usable invariant return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! ascii_simd_check_align_unrolled { ( $name:ident, $src_unit:ty, $dst_unit:ty, + // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_both_aligned:ident, + // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_src_aligned:ident, + // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_neither_aligned:ident, + // Safety: This function must require aligned src/dest that are valid for reading/writing 2*SIMD_STRIDE_SIZE src_unit/dst_unit $double_stride_both_aligned:ident, + // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing 2*SIMD_STRIDE_SIZE src_unit/dst_unit $double_stride_src_aligned:ident ) => { - #[inline(always)] + /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. + /// + /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being + /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let unit_size = ::core::mem::size_of::<$src_unit>(); let mut offset = 0usize; // This loop is only broken out of as a goto forward without // actually looping 'outer: loop { + // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. if SIMD_STRIDE_SIZE <= len { // First, process one unaligned + // Safety: this is safe to call since we're valid for this read/write if !$stride_neither_aligned(src, dst) { break 'outer; } offset = SIMD_STRIDE_SIZE; // We have now seen 16 ASCII bytes. Let's guess that // there will be enough more to justify more expense // in the case of non-ASCII. // Use aligned reads for the sake of old microachitectures. + // + // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. + // This is less that SIMD_ALIGNMENT, which is also SIMD_STRIDE_SIZE (as documented) let until_alignment = ((SIMD_ALIGNMENT - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK) / unit_size; - // This addition won't overflow, because even in the 32-bit PAE case the + // Safety: This addition won't overflow, because even in the 32-bit PAE case the // address space holds enough code that the slice length can't be that // close to address space size. // offset now equals SIMD_STRIDE_SIZE, hence times 3 below. + // + // Safety: if this check succeeds we're valid for reading/writing at least `2 * SIMD_STRIDE_SIZE` elements plus `until_alignment`. + // The extra SIMD_STRIDE_SIZE in the condition is because `offset` is already `SIMD_STRIDE_SIZE`. if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len { if until_alignment != 0 { + // Safety: this is safe to call since we're valid for this read/write (and more), and don't care about alignment + // This will copy over bytes that get decoded twice since it's not incrementing `offset` by SIMD_STRIDE_SIZE. This is fine. if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += until_alignment; } + // Safety: At this point we're valid for reading/writing 2*SIMD_STRIDE_SIZE elements + // Safety: Now `offset` is aligned for `src` let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2); + // Safety: This is whether dst is aligned let dst_masked = (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK; if dst_masked == 0 { loop { + // Safety: both are aligned, we can call the aligned function. We're valid for reading/writing double stride from the initial condition + // and the loop break condition below if let Some(advance) = $double_stride_both_aligned(src.add(offset), dst.add(offset)) { offset += advance; let code_unit = *(src.add(offset)); + // Safety: uses safety-usable invariant on ascii_to_ascii_simd_double_stride to return + // guaranteed non-ascii return Some((code_unit, offset)); } offset += SIMD_STRIDE_SIZE * 2; + // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride_times_two { break; } } + // Safety: We're valid for reading/writing one more, and can still assume alignment if offset + SIMD_STRIDE_SIZE <= len { if !$stride_both_aligned(src.add(offset), dst.add(offset)) { break 'outer; } offset += SIMD_STRIDE_SIZE; } } else { loop { + // Safety: only src is aligned here. We're valid for reading/writing double stride from the initial condition + // and the loop break condition below if let Some(advance) = $double_stride_src_aligned(src.add(offset), dst.add(offset)) { offset += advance; let code_unit = *(src.add(offset)); + // Safety: uses safety-usable invariant on ascii_to_ascii_simd_double_stride to return + // guaranteed non-ascii return Some((code_unit, offset)); } offset += SIMD_STRIDE_SIZE * 2; + // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. + if offset > len_minus_stride_times_two { break; } } + // Safety: We're valid for reading/writing one more, and can still assume alignment if offset + SIMD_STRIDE_SIZE <= len { if !$stride_src_aligned(src.add(offset), dst.add(offset)) { break 'outer; } offset += SIMD_STRIDE_SIZE; } } } else { // At most two iterations, so unroll if offset + SIMD_STRIDE_SIZE <= len { + // Safety: The check above ensures we're allowed to read/write this, and we don't use alignment if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; if offset + SIMD_STRIDE_SIZE <= len { + // Safety: The check above ensures we're allowed to read/write this, and we don't use alignment if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; } } } } break 'outer; } while offset < len { + // Safety: relies straightforwardly on the `len` invariant let code_unit = *(src.add(offset)); if code_unit > 127 { + // Safety-usable invariant upheld here return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! latin1_simd_check_align { ( $name:ident, $src_unit:ty, $dst_unit:ty, + // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_both_aligned:ident, + // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_src_aligned:ident, + // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_dst_aligned:ident, + // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_neither_aligned:ident + ) => { + /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. #[inline(always)] pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { let mut offset = 0usize; + // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; + // Whether dst is aligned let dst_masked = (dst as usize) & SIMD_ALIGNMENT_MASK; + // Whether src is aligned if ((src as usize) & SIMD_ALIGNMENT_MASK) == 0 { if dst_masked == 0 { loop { + // Safety: Both were aligned, we can use the aligned function $stride_both_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for + // reading/writing at least SIMD_STRIDE_SIZE elements. if offset > len_minus_stride { break; } } } else { loop { + // Safety: src was aligned, dst was not $stride_src_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for + // reading/writing at least SIMD_STRIDE_SIZE elements. if offset > len_minus_stride { break; } } } } else { if dst_masked == 0 { loop { + // Safety: src was aligned, dst was not $stride_dst_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for + // reading/writing at least SIMD_STRIDE_SIZE elements. if offset > len_minus_stride { break; } } } else { loop { + // Safety: Neither were aligned $stride_neither_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which means in the next iteration we're valid for + // reading/writing at least SIMD_STRIDE_SIZE elements. if offset > len_minus_stride { break; } } } } } while offset < len { + // Safety: relies straightforwardly on the `len` invariant let code_unit = *(src.add(offset)); *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } } }; } #[allow(unused_macros)] macro_rules! latin1_simd_check_align_unrolled { ( $name:ident, $src_unit:ty, $dst_unit:ty, + // Safety: This function must require aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_both_aligned:ident, + // Safety: This function must require aligned/unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_src_aligned:ident, + // Safety: This function must require unaligned/aligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_dst_aligned:ident, + // Safety: This function must require unaligned src/dest that are valid for reading/writing SIMD_STRIDE_SIZE src_unit/dst_unit $stride_neither_aligned:ident ) => { + /// Safety: src/dst must be valid for reads/writes of `len` elements of their units. #[inline(always)] pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { let unit_size = ::core::mem::size_of::<$src_unit>(); let mut offset = 0usize; + // Safety: if this check succeeds we're valid for reading/writing at least `SIMD_STRIDE_SIZE` elements. if SIMD_STRIDE_SIZE <= len { + // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. + // This is by definition less than SIMD_STRIDE_SIZE. let mut until_alignment = ((SIMD_STRIDE_SIZE - ((src as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK) / unit_size; while until_alignment != 0 { + // Safety: This is a straightforward copy, since until_alignment is < SIMD_STRIDE_SIZE < len, this is in-bounds *(dst.add(offset)) = *(src.add(offset)) as $dst_unit; offset += 1; until_alignment -= 1; } + // Safety: here offset will be `until_alignment`, i.e. enough to align `src`. let len_minus_stride = len - SIMD_STRIDE_SIZE; + // Safety: if this check succeeds we're valid for reading/writing at least `2 * SIMD_STRIDE_SIZE` elements. if offset + SIMD_STRIDE_SIZE * 2 <= len { let len_minus_stride_times_two = len_minus_stride - SIMD_STRIDE_SIZE; + // Safety: at this point src is known to be aligned at offset, dst is not. if (dst.add(offset) as usize) & SIMD_ALIGNMENT_MASK == 0 { loop { + // Safety: We checked alignment of dst above, we can use the alignment functions. We're allowed to read/write 2*SIMD_STRIDE_SIZE elements, which we do. $stride_both_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; $stride_both_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride_times_two { break; } } } else { loop { + // Safety: we ensured alignment of src already. $stride_src_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; $stride_src_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride_times_two { break; } } } } + // Safety: This is `offset > len - SIMD_STRIDE_SIZE` which means we are valid to munch SIMD_STRIDE_SIZE more elements, which we do if offset < len_minus_stride { $stride_src_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; } } while offset < len { + // Safety: uses len invariant here and below let code_unit = *(src.add(offset)); // On x86_64, this loop autovectorizes but in the pack // case there are instructions whose purpose is to make sure // each u16 in the vector is truncated before packing. However, // since we don't care about saturating behavior of SSE2 packing // when the input isn't Latin1, those instructions are useless. // Unfortunately, using the `assume` intrinsic to lie to the // optimizer doesn't make LLVM omit the trunctation that we @@ -688,138 +869,180 @@ macro_rules! latin1_simd_check_align_unr offset += 1; } } }; } #[allow(unused_macros)] macro_rules! ascii_simd_unalign { + // Safety: stride_neither_aligned must be a function that requires src/dest be valid for unaligned reads/writes for SIMD_STRIDE_SIZE elements of type src_unit/dest_unit ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => { + /// Safety: src and dst must be valid for reads/writes of len elements of type src_unit/dst_unit + /// + /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being + /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found #[inline(always)] pub unsafe fn $name( src: *const $src_unit, dst: *mut $dst_unit, len: usize, ) -> Option<($src_unit, usize)> { let mut offset = 0usize; + // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; loop { + // Safety: We know we're valid for `stride` reads/writes, so we can call this function. We don't need alignment. if !$stride_neither_aligned(src.add(offset), dst.add(offset)) { break; } offset += SIMD_STRIDE_SIZE; + // This is `offset > len - stride` which means we always have at least `stride` elements to munch next time. if offset > len_minus_stride { break; } } } while offset < len { + // Safety: Uses len invariant here and below let code_unit = *(src.add(offset)); if code_unit > 127 { + // Safety-usable invariant upheld here return Some((code_unit, offset)); } *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } None } }; } #[allow(unused_macros)] macro_rules! latin1_simd_unalign { + // Safety: stride_neither_aligned must be a function that requires src/dest be valid for unaligned reads/writes for SIMD_STRIDE_SIZE elements of type src_unit/dest_unit ($name:ident, $src_unit:ty, $dst_unit:ty, $stride_neither_aligned:ident) => { + /// Safety: src and dst must be valid for unaligned reads/writes of len elements of type src_unit/dst_unit #[inline(always)] pub unsafe fn $name(src: *const $src_unit, dst: *mut $dst_unit, len: usize) { let mut offset = 0usize; + // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; loop { + // Safety: We know we're valid for `stride` reads/writes, so we can call this function. We don't need alignment. $stride_neither_aligned(src.add(offset), dst.add(offset)); offset += SIMD_STRIDE_SIZE; + // This is `offset > len - stride` which means we always have at least `stride` elements to munch next time. if offset > len_minus_stride { break; } } } while offset < len { + // Safety: Uses len invariant here let code_unit = *(src.add(offset)); *(dst.add(offset)) = code_unit as $dst_unit; offset += 1; } } }; } #[allow(unused_macros)] macro_rules! ascii_to_ascii_simd_stride { + // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) ($name:ident, $load:ident, $store:ident) => { + /// Safety: src and dst must be valid for 16 bytes of read/write according to + /// the $load/$store fn, which may allow for unaligned reads/writes or require + /// alignment to either 16x8 or u8x16. #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u8) -> bool { let simd = $load(src); if !simd_is_ascii(simd) { return false; } $store(dst, simd); true } }; } #[allow(unused_macros)] macro_rules! ascii_to_ascii_simd_double_stride { + // Safety: store must be valid for 32 bytes of write, which may be unaligned (candidates: `store(8|16)_(aligned|unaligned)`) ($name:ident, $store:ident) => { + /// Safety: src must be valid for 32 bytes of aligned u8x16 read + /// dst must be valid for 32 bytes of unaligned write according to + /// the $store fn, which may allow for unaligned writes or require + /// alignment to either 16x8 or u8x16. + /// + /// Safety-usable invariant: Returns Some(index) if the element at `index` is invalid ASCII #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u8) -> Option { let first = load16_aligned(src); let second = load16_aligned(src.add(SIMD_STRIDE_SIZE)); $store(dst, first); if unlikely(!simd_is_ascii(first | second)) { + // Safety: mask_ascii produces a mask of all the high bits. let mask_first = mask_ascii(first); if mask_first != 0 { + // Safety: on little endian systems this will be the number of ascii bytes + // before the first non-ascii, i.e. valid for indexing src + // TODO SAFETY: What about big-endian systems? return Some(mask_first.trailing_zeros() as usize); } $store(dst.add(SIMD_STRIDE_SIZE), second); let mask_second = mask_ascii(second); + // Safety: on little endian systems this will be the number of ascii bytes + // before the first non-ascii, i.e. valid for indexing src return Some(SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize); } $store(dst.add(SIMD_STRIDE_SIZE), second); None } }; } #[allow(unused_macros)] macro_rules! ascii_to_basic_latin_simd_stride { + // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) ($name:ident, $load:ident, $store:ident) => { + /// Safety: src and dst must be valid for 16/32 bytes of read/write according to + /// the $load/$store fn, which may allow for unaligned reads/writes or require + /// alignment to either 16x8 or u8x16. #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u16) -> bool { let simd = $load(src); if !simd_is_ascii(simd) { return false; } let (first, second) = simd_unpack(simd); $store(dst, first); $store(dst.add(8), second); true } }; } #[allow(unused_macros)] macro_rules! ascii_to_basic_latin_simd_double_stride { + // Safety: store must be valid for 16 bytes of write, which may be unaligned ($name:ident, $store:ident) => { + /// Safety: src must be valid for 2*SIMD_STRIDE_SIZE bytes of aligned reads, + /// aligned to either 16x8 or u8x16. + /// dst must be valid for 2*SIMD_STRIDE_SIZE bytes of aligned or unaligned reads #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u16) -> Option { let first = load16_aligned(src); let second = load16_aligned(src.add(SIMD_STRIDE_SIZE)); let (a, b) = simd_unpack(first); $store(dst, a); + // Safety: divide by 2 since it's a u16 pointer $store(dst.add(SIMD_STRIDE_SIZE / 2), b); if unlikely(!simd_is_ascii(first | second)) { let mask_first = mask_ascii(first); if mask_first != 0 { return Some(mask_first.trailing_zeros() as usize); } let (c, d) = simd_unpack(second); $store(dst.add(SIMD_STRIDE_SIZE), c); @@ -832,47 +1055,59 @@ macro_rules! ascii_to_basic_latin_simd_d $store(dst.add(SIMD_STRIDE_SIZE + (SIMD_STRIDE_SIZE / 2)), d); None } }; } #[allow(unused_macros)] macro_rules! unpack_simd_stride { + // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) ($name:ident, $load:ident, $store:ident) => { + /// Safety: src and dst must be valid for 16 bytes of read/write according to + /// the $load/$store fn, which may allow for unaligned reads/writes or require + /// alignment to either 16x8 or u8x16. #[inline(always)] pub unsafe fn $name(src: *const u8, dst: *mut u16) { let simd = $load(src); let (first, second) = simd_unpack(simd); $store(dst, first); $store(dst.add(8), second); } }; } #[allow(unused_macros)] macro_rules! basic_latin_to_ascii_simd_stride { + // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) ($name:ident, $load:ident, $store:ident) => { + /// Safety: src and dst must be valid for 32/16 bytes of read/write according to + /// the $load/$store fn, which may allow for unaligned reads/writes or require + /// alignment to either 16x8 or u8x16. #[inline(always)] pub unsafe fn $name(src: *const u16, dst: *mut u8) -> bool { let first = $load(src); let second = $load(src.add(8)); if simd_is_basic_latin(first | second) { $store(dst, simd_pack(first, second)); true } else { false } } }; } #[allow(unused_macros)] macro_rules! pack_simd_stride { + // Safety: load/store must be valid for 16 bytes of read/write, which may be unaligned. (candidates: `(load|store)(16|8)_(unaligned|aligned)` functions) ($name:ident, $load:ident, $store:ident) => { + /// Safety: src and dst must be valid for 32/16 bytes of read/write according to + /// the $load/$store fn, which may allow for unaligned reads/writes or require + /// alignment to either 16x8 or u8x16. #[inline(always)] pub unsafe fn $name(src: *const u16, dst: *mut u8) { let first = $load(src); let second = $load(src.add(8)); $store(dst, simd_pack(first, second)); } }; } @@ -888,24 +1123,28 @@ cfg_if! { // pub const ALIGNMENT: usize = 8; pub const ALU_STRIDE_SIZE: usize = 16; pub const ALU_ALIGNMENT: usize = 8; pub const ALU_ALIGNMENT_MASK: usize = 7; + // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently produce + // neither_unaligned variants using only unaligned inputs. ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_neither_aligned, load16_unaligned, store8_unaligned); unpack_simd_stride!(unpack_stride_neither_aligned, load16_unaligned, store8_unaligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned); + // Safety for conversion macros: We use the unalign macro with unalign functions above. All stride functions were produced + // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. ascii_simd_unalign!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_neither_aligned); ascii_simd_unalign!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_neither_aligned); ascii_simd_unalign!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_neither_aligned); latin1_simd_unalign!(unpack_latin1, u8, u16, unpack_stride_neither_aligned); latin1_simd_unalign!(pack_latin1, u16, u8, pack_stride_neither_aligned); } else if #[cfg(all(feature = "simd-accel", target_endian = "little", target_feature = "neon"))] { // SIMD with different instructions for aligned and unaligned loads and stores. // @@ -914,16 +1153,19 @@ cfg_if! { // but the benchmark results I see don't agree. pub const SIMD_STRIDE_SIZE: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; pub const SIMD_ALIGNMENT_MASK: usize = 15; + // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently name + // aligned/unaligned functions according to src/dst being aligned/unaligned + ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_dst_aligned, load16_unaligned, store16_aligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_neither_aligned, load16_unaligned, store16_unaligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_both_aligned, load16_aligned, store8_aligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_src_aligned, load16_aligned, store8_unaligned); ascii_to_basic_latin_simd_stride!(ascii_to_basic_latin_stride_dst_aligned, load16_unaligned, store8_aligned); @@ -939,36 +1181,43 @@ cfg_if! { basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned); pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned); pack_simd_stride!(pack_stride_dst_aligned, load8_unaligned, store16_aligned); pack_simd_stride!(pack_stride_neither_aligned, load8_unaligned, store16_unaligned); + // Safety for conversion macros: We use the correct pattern of both/src/dst/neither here. All stride functions were produced + // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. + ascii_simd_check_align!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_dst_aligned, ascii_to_ascii_stride_neither_aligned); ascii_simd_check_align!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_dst_aligned, ascii_to_basic_latin_stride_neither_aligned); ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned); latin1_simd_check_align!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned); latin1_simd_check_align!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned); } else if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] { // SIMD with different instructions for aligned and unaligned loads and stores. // // Newer microarchitectures are not supposed to have a performance difference between // aligned and unaligned SSE2 loads and stores when the address is actually aligned, // but the benchmark results I see don't agree. pub const SIMD_STRIDE_SIZE: usize = 16; + /// Safety-usable invariant: This should be identical to SIMD_STRIDE_SIZE (used by ascii_simd_check_align_unrolled) pub const SIMD_ALIGNMENT: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; pub const SIMD_ALIGNMENT_MASK: usize = 15; + // Safety for stride macros: We stick to the load8_aligned/etc family of functions. We consistently name + // aligned/unaligned functions according to src/dst being aligned/unaligned + ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_both_aligned, store16_aligned); ascii_to_ascii_simd_double_stride!(ascii_to_ascii_simd_double_stride_src_aligned, store16_unaligned); ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_both_aligned, store8_aligned); ascii_to_basic_latin_simd_double_stride!(ascii_to_basic_latin_simd_double_stride_src_aligned, store8_unaligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_both_aligned, load16_aligned, store16_aligned); ascii_to_ascii_simd_stride!(ascii_to_ascii_stride_src_aligned, load16_aligned, store16_unaligned); @@ -984,33 +1233,43 @@ cfg_if! { basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_both_aligned, load8_aligned, store16_aligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_src_aligned, load8_aligned, store16_unaligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_dst_aligned, load8_unaligned, store16_aligned); basic_latin_to_ascii_simd_stride!(basic_latin_to_ascii_stride_neither_aligned, load8_unaligned, store16_unaligned); pack_simd_stride!(pack_stride_both_aligned, load8_aligned, store16_aligned); pack_simd_stride!(pack_stride_src_aligned, load8_aligned, store16_unaligned); + // Safety for conversion macros: We use the correct pattern of both/src/dst/neither/double_both/double_src here. All stride functions were produced + // by stride macros that universally munch a single SIMD_STRIDE_SIZE worth of elements. + ascii_simd_check_align_unrolled!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride_both_aligned, ascii_to_ascii_stride_src_aligned, ascii_to_ascii_stride_neither_aligned, ascii_to_ascii_simd_double_stride_both_aligned, ascii_to_ascii_simd_double_stride_src_aligned); ascii_simd_check_align_unrolled!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_both_aligned, ascii_to_basic_latin_stride_src_aligned, ascii_to_basic_latin_stride_neither_aligned, ascii_to_basic_latin_simd_double_stride_both_aligned, ascii_to_basic_latin_simd_double_stride_src_aligned); ascii_simd_check_align!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_both_aligned, basic_latin_to_ascii_stride_src_aligned, basic_latin_to_ascii_stride_dst_aligned, basic_latin_to_ascii_stride_neither_aligned); latin1_simd_check_align_unrolled!(unpack_latin1, u8, u16, unpack_stride_both_aligned, unpack_stride_src_aligned, unpack_stride_dst_aligned, unpack_stride_neither_aligned); latin1_simd_check_align_unrolled!(pack_latin1, u16, u8, pack_stride_both_aligned, pack_stride_src_aligned, pack_stride_dst_aligned, pack_stride_neither_aligned); } else if #[cfg(all(target_endian = "little", target_pointer_width = "64"))] { // Aligned ALU word, little-endian, 64-bit + /// Safety invariant: this is the amount of bytes consumed by + /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. + /// This is also the number of bytes produced by pack_alu. + /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. pub const ALU_STRIDE_SIZE: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; + // Safety invariant: this is the pointer width in bytes pub const ALU_ALIGNMENT: usize = 8; + // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT pub const ALU_ALIGNMENT_MASK: usize = 7; + /// Safety: dst must point to valid space for writing four `usize`s #[inline(always)] unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { let first = ((0x0000_0000_FF00_0000usize & word) << 24) | ((0x0000_0000_00FF_0000usize & word) << 16) | ((0x0000_0000_0000_FF00usize & word) << 8) | (0x0000_0000_0000_00FFusize & word); let second = ((0xFF00_0000_0000_0000usize & word) >> 8) | ((0x00FF_0000_0000_0000usize & word) >> 16) | @@ -1019,22 +1278,24 @@ cfg_if! { let third = ((0x0000_0000_FF00_0000usize & second_word) << 24) | ((0x0000_0000_00FF_0000usize & second_word) << 16) | ((0x0000_0000_0000_FF00usize & second_word) << 8) | (0x0000_0000_0000_00FFusize & second_word); let fourth = ((0xFF00_0000_0000_0000usize & second_word) >> 8) | ((0x00FF_0000_0000_0000usize & second_word) >> 16) | ((0x0000_FF00_0000_0000usize & second_word) >> 24) | ((0x0000_00FF_0000_0000usize & second_word) >> 32); + // Safety: fn invariant used here *dst = first; *(dst.add(1)) = second; *(dst.add(2)) = third; *(dst.add(3)) = fourth; } + /// Safety: dst must point to valid space for writing two `usize`s #[inline(always)] unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { let word = ((0x00FF_0000_0000_0000usize & second) << 8) | ((0x0000_00FF_0000_0000usize & second) << 16) | ((0x0000_0000_00FF_0000usize & second) << 24) | ((0x0000_0000_0000_00FFusize & second) << 32) | ((0x00FF_0000_0000_0000usize & first) >> 24) | ((0x0000_00FF_0000_0000usize & first) >> 16) | @@ -1043,70 +1304,88 @@ cfg_if! { let second_word = ((0x00FF_0000_0000_0000usize & fourth) << 8) | ((0x0000_00FF_0000_0000usize & fourth) << 16) | ((0x0000_0000_00FF_0000usize & fourth) << 24) | ((0x0000_0000_0000_00FFusize & fourth) << 32) | ((0x00FF_0000_0000_0000usize & third) >> 24) | ((0x0000_00FF_0000_0000usize & third) >> 16) | ((0x0000_0000_00FF_0000usize & third) >> 8) | (0x0000_0000_0000_00FFusize & third); + // Safety: fn invariant used here *dst = word; *(dst.add(1)) = second_word; } } else if #[cfg(all(target_endian = "little", target_pointer_width = "32"))] { // Aligned ALU word, little-endian, 32-bit + /// Safety invariant: this is the amount of bytes consumed by + /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. + /// This is also the number of bytes produced by pack_alu. + /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. pub const ALU_STRIDE_SIZE: usize = 8; pub const MAX_STRIDE_SIZE: usize = 8; + // Safety invariant: this is the pointer width in bytes pub const ALU_ALIGNMENT: usize = 4; + // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT pub const ALU_ALIGNMENT_MASK: usize = 3; + /// Safety: dst must point to valid space for writing four `usize`s #[inline(always)] unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { let first = ((0x0000_FF00usize & word) << 8) | (0x0000_00FFusize & word); let second = ((0xFF00_0000usize & word) >> 8) | ((0x00FF_0000usize & word) >> 16); let third = ((0x0000_FF00usize & second_word) << 8) | (0x0000_00FFusize & second_word); let fourth = ((0xFF00_0000usize & second_word) >> 8) | ((0x00FF_0000usize & second_word) >> 16); + // Safety: fn invariant used here *dst = first; *(dst.add(1)) = second; *(dst.add(2)) = third; *(dst.add(3)) = fourth; } + /// Safety: dst must point to valid space for writing two `usize`s #[inline(always)] unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { let word = ((0x00FF_0000usize & second) << 8) | ((0x0000_00FFusize & second) << 16) | ((0x00FF_0000usize & first) >> 8) | (0x0000_00FFusize & first); let second_word = ((0x00FF_0000usize & fourth) << 8) | ((0x0000_00FFusize & fourth) << 16) | ((0x00FF_0000usize & third) >> 8) | (0x0000_00FFusize & third); + // Safety: fn invariant used here *dst = word; *(dst.add(1)) = second_word; } } else if #[cfg(all(target_endian = "big", target_pointer_width = "64"))] { // Aligned ALU word, big-endian, 64-bit + /// Safety invariant: this is the amount of bytes consumed by + /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. + /// This is also the number of bytes produced by pack_alu. + /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. pub const ALU_STRIDE_SIZE: usize = 16; pub const MAX_STRIDE_SIZE: usize = 16; + // Safety invariant: this is the pointer width in bytes pub const ALU_ALIGNMENT: usize = 8; + // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT pub const ALU_ALIGNMENT_MASK: usize = 7; + /// Safety: dst must point to valid space for writing four `usize`s #[inline(always)] unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { let first = ((0xFF00_0000_0000_0000usize & word) >> 8) | ((0x00FF_0000_0000_0000usize & word) >> 16) | ((0x0000_FF00_0000_0000usize & word) >> 24) | ((0x0000_00FF_0000_0000usize & word) >> 32); let second = ((0x0000_0000_FF00_0000usize & word) << 24) | ((0x0000_0000_00FF_0000usize & word) << 16) | @@ -1115,22 +1394,24 @@ cfg_if! { let third = ((0xFF00_0000_0000_0000usize & second_word) >> 8) | ((0x00FF_0000_0000_0000usize & second_word) >> 16) | ((0x0000_FF00_0000_0000usize & second_word) >> 24) | ((0x0000_00FF_0000_0000usize & second_word) >> 32); let fourth = ((0x0000_0000_FF00_0000usize & second_word) << 24) | ((0x0000_0000_00FF_0000usize & second_word) << 16) | ((0x0000_0000_0000_FF00usize & second_word) << 8) | (0x0000_0000_0000_00FFusize & second_word); + // Safety: fn invariant used here *dst = first; *(dst.add(1)) = second; *(dst.add(2)) = third; *(dst.add(3)) = fourth; } + /// Safety: dst must point to valid space for writing two `usize`s #[inline(always)] unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { let word = ((0x00FF0000_00000000usize & first) << 8) | ((0x000000FF_00000000usize & first) << 16) | ((0x00000000_00FF0000usize & first) << 24) | ((0x00000000_000000FFusize & first) << 32) | ((0x00FF0000_00000000usize & second) >> 24) | ((0x000000FF_00000000usize & second) >> 16) | @@ -1139,67 +1420,80 @@ cfg_if! { let second_word = ((0x00FF0000_00000000usize & third) << 8) | ((0x000000FF_00000000usize & third) << 16) | ((0x00000000_00FF0000usize & third) << 24) | ((0x00000000_000000FFusize & third) << 32) | ((0x00FF0000_00000000usize & fourth) >> 24) | ((0x000000FF_00000000usize & fourth) >> 16) | ((0x00000000_00FF0000usize & fourth) >> 8) | (0x00000000_000000FFusize & fourth); + // Safety: fn invariant used here *dst = word; *(dst.add(1)) = second_word; } } else if #[cfg(all(target_endian = "big", target_pointer_width = "32"))] { // Aligned ALU word, big-endian, 32-bit + /// Safety invariant: this is the amount of bytes consumed by + /// unpack_alu. This will be twice the pointer width, as it consumes two usizes. + /// This is also the number of bytes produced by pack_alu. + /// This is also the number of u16 code units produced/consumed by unpack_alu/pack_alu respectively. pub const ALU_STRIDE_SIZE: usize = 8; pub const MAX_STRIDE_SIZE: usize = 8; + // Safety invariant: this is the pointer width in bytes pub const ALU_ALIGNMENT: usize = 4; + // Safety invariant: this is a mask for getting the bits of a pointer not aligned to ALU_ALIGNMENT pub const ALU_ALIGNMENT_MASK: usize = 3; + /// Safety: dst must point to valid space for writing four `usize`s #[inline(always)] unsafe fn unpack_alu(word: usize, second_word: usize, dst: *mut usize) { let first = ((0xFF00_0000usize & word) >> 8) | ((0x00FF_0000usize & word) >> 16); let second = ((0x0000_FF00usize & word) << 8) | (0x0000_00FFusize & word); let third = ((0xFF00_0000usize & second_word) >> 8) | ((0x00FF_0000usize & second_word) >> 16); let fourth = ((0x0000_FF00usize & second_word) << 8) | (0x0000_00FFusize & second_word); + // Safety: fn invariant used here *dst = first; *(dst.add(1)) = second; *(dst.add(2)) = third; *(dst.add(3)) = fourth; } + /// Safety: dst must point to valid space for writing two `usize`s #[inline(always)] unsafe fn pack_alu(first: usize, second: usize, third: usize, fourth: usize, dst: *mut usize) { let word = ((0x00FF_0000usize & first) << 8) | ((0x0000_00FFusize & first) << 16) | ((0x00FF_0000usize & second) >> 8) | (0x0000_00FFusize & second); let second_word = ((0x00FF_0000usize & third) << 8) | ((0x0000_00FFusize & third) << 16) | ((0x00FF_0000usize & fourth) >> 8) | (0x0000_00FFusize & fourth); + // Safety: fn invariant used here *dst = word; *(dst.add(1)) = second_word; } } else { ascii_naive!(ascii_to_ascii, u8, u8); ascii_naive!(ascii_to_basic_latin, u8, u16); ascii_naive!(basic_latin_to_ascii, u16, u8); } } cfg_if! { + // Safety-usable invariant: this counts the zeroes from the "first byte" of utf-8 data packed into a usize + // with the target endianness if #[cfg(target_endian = "little")] { #[allow(dead_code)] #[inline(always)] fn count_zeros(word: usize) -> u32 { word.trailing_zeros() } } else { #[allow(dead_code)] @@ -1207,208 +1501,272 @@ cfg_if! { fn count_zeros(word: usize) -> u32 { word.leading_zeros() } } } cfg_if! { if #[cfg(all(feature = "simd-accel", target_endian = "little", target_arch = "disabled"))] { + /// Safety-usable invariant: Will return the value and position of the first non-ASCII byte in the slice in a Some if found. + /// In other words, the first element of the Some is always `> 127` #[inline(always)] pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { let src = slice.as_ptr(); let len = slice.len(); let mut offset = 0usize; + // Safety: if this check succeeds we're valid for reading/writing at least `stride` elements. if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; loop { + // Safety: src at offset is valid for a `SIMD_STRIDE_SIZE` read let simd = unsafe { load16_unaligned(src.add(offset)) }; if !simd_is_ascii(simd) { break; } offset += SIMD_STRIDE_SIZE; + // This is `offset > len - SIMD_STRIDE_SIZE` which means we always have at least `SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride { break; } } } while offset < len { let code_unit = slice[offset]; if code_unit > 127 { + // Safety: Safety-usable invariant upheld here return Some((code_unit, offset)); } offset += 1; } None } } else if #[cfg(all(feature = "simd-accel", target_feature = "sse2"))] { + /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being + /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found #[inline(always)] pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { let src = slice.as_ptr(); let len = slice.len(); let mut offset = 0usize; + // Safety: if this check succeeds we're valid for reading at least `stride` elements. if SIMD_STRIDE_SIZE <= len { // First, process one unaligned vector + // Safety: src is valid for a `SIMD_STRIDE_SIZE` read let simd = unsafe { load16_unaligned(src) }; let mask = mask_ascii(simd); if mask != 0 { offset = mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; return Some((non_ascii, offset)); } offset = SIMD_STRIDE_SIZE; + // Safety: Now that offset has changed we don't yet know how much it is valid for // We have now seen 16 ASCII bytes. Let's guess that // there will be enough more to justify more expense // in the case of non-ASCII. // Use aligned reads for the sake of old microachitectures. + // Safety: this correctly calculates the number of src_units that need to be read before the remaining list is aligned. + // This is by definition less than SIMD_ALIGNMENT, which is defined to be equal to SIMD_STRIDE_SIZE. let until_alignment = unsafe { (SIMD_ALIGNMENT - ((src.add(offset) as usize) & SIMD_ALIGNMENT_MASK)) & SIMD_ALIGNMENT_MASK }; // This addition won't overflow, because even in the 32-bit PAE case the // address space holds enough code that the slice length can't be that // close to address space size. // offset now equals SIMD_STRIDE_SIZE, hence times 3 below. + // + // Safety: if this check succeeds we're valid for reading at least `2 * SIMD_STRIDE_SIZE` elements plus `until_alignment`. + // The extra SIMD_STRIDE_SIZE in the condition is because `offset` is already `SIMD_STRIDE_SIZE`. if until_alignment + (SIMD_STRIDE_SIZE * 3) <= len { if until_alignment != 0 { + // Safety: this is safe to call since we're valid for this read (and more), and don't care about alignment + // This will copy over bytes that get decoded twice since it's not incrementing `offset` by SIMD_STRIDE_SIZE. This is fine. let simd = unsafe { load16_unaligned(src.add(offset)) }; let mask = mask_ascii(simd); if mask != 0 { offset += mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; return Some((non_ascii, offset)); } offset += until_alignment; } + // Safety: At this point we're valid for reading 2*SIMD_STRIDE_SIZE elements + // Safety: Now `offset` is aligned for `src` let len_minus_stride_times_two = len - (SIMD_STRIDE_SIZE * 2); loop { + // Safety: We were valid for this read, and were aligned. let first = unsafe { load16_aligned(src.add(offset)) }; let second = unsafe { load16_aligned(src.add(offset + SIMD_STRIDE_SIZE)) }; if !simd_is_ascii(first | second) { + // Safety: mask_ascii produces a mask of all the high bits. let mask_first = mask_ascii(first); if mask_first != 0 { + // Safety: on little endian systems this will be the number of ascii bytes + // before the first non-ascii, i.e. valid for indexing src + // TODO SAFETY: What about big-endian systems? offset += mask_first.trailing_zeros() as usize; } else { let mask_second = mask_ascii(second); + // Safety: on little endian systems this will be the number of ascii bytes + // before the first non-ascii, i.e. valid for indexing src offset += SIMD_STRIDE_SIZE + mask_second.trailing_zeros() as usize; } + // Safety: We know this is non-ASCII, and can uphold the safety-usable invariant here let non_ascii = unsafe { *src.add(offset) }; + return Some((non_ascii, offset)); } offset += SIMD_STRIDE_SIZE * 2; + // Safety: This is `offset > len - 2 * SIMD_STRIDE_SIZE` which means we always have at least `2 * SIMD_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride_times_two { break; } } + // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` if offset + SIMD_STRIDE_SIZE <= len { - let simd = unsafe { load16_aligned(src.add(offset)) }; - let mask = mask_ascii(simd); + // Safety: We were valid for this read, and were aligned. + let simd = unsafe { load16_aligned(src.add(offset)) }; + // Safety: mask_ascii produces a mask of all the high bits. + let mask = mask_ascii(simd); if mask != 0 { + // Safety: on little endian systems this will be the number of ascii bytes + // before the first non-ascii, i.e. valid for indexing src offset += mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; + // Safety: We know this is non-ASCII, and can uphold the safety-usable invariant here return Some((non_ascii, offset)); } offset += SIMD_STRIDE_SIZE; } } else { + // Safety: this is the unaligned branch // At most two iterations, so unroll + // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` if offset + SIMD_STRIDE_SIZE <= len { + // Safety: We're valid for this read but must use an unaligned read let simd = unsafe { load16_unaligned(src.add(offset)) }; let mask = mask_ascii(simd); if mask != 0 { offset += mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; + // Safety-usable invariant upheld here (same as above) return Some((non_ascii, offset)); } offset += SIMD_STRIDE_SIZE; + // Safety: if this check succeeds we're valid for reading at least `SIMD_STRIDE_SIZE` if offset + SIMD_STRIDE_SIZE <= len { + // Safety: We're valid for this read but must use an unaligned read let simd = unsafe { load16_unaligned(src.add(offset)) }; let mask = mask_ascii(simd); if mask != 0 { offset += mask.trailing_zeros() as usize; let non_ascii = unsafe { *src.add(offset) }; + // Safety-usable invariant upheld here (same as above) return Some((non_ascii, offset)); } offset += SIMD_STRIDE_SIZE; } } } } while offset < len { + // Safety: relies straightforwardly on the `len` invariant let code_unit = unsafe { *(src.add(offset)) }; if code_unit > 127 { + // Safety-usable invariant upheld here return Some((code_unit, offset)); } offset += 1; } None } } else { + // Safety-usable invariant: returns byte index of first non-ascii byte #[inline(always)] fn find_non_ascii(word: usize, second_word: usize) -> Option { let word_masked = word & ASCII_MASK; let second_masked = second_word & ASCII_MASK; if (word_masked | second_masked) == 0 { + // Both are ascii, invariant upheld return None; } if word_masked != 0 { let zeros = count_zeros(word_masked); - // `zeros` now contains 7 (for the seven bits of non-ASCII) + // `zeros` now contains 0 to 7 (for the seven bits of masked ASCII in little endian, + // or up to 7 bits of non-ASCII in big endian if the first byte is non-ASCII) // plus 8 times the number of ASCII in text order before the // non-ASCII byte in the little-endian case or 8 times the number of ASCII in // text order before the non-ASCII byte in the big-endian case. let num_ascii = (zeros >> 3) as usize; + // Safety-usable invariant upheld here return Some(num_ascii); } let zeros = count_zeros(second_masked); - // `zeros` now contains 7 (for the seven bits of non-ASCII) + // `zeros` now contains 0 to 7 (for the seven bits of masked ASCII in little endian, + // or up to 7 bits of non-ASCII in big endian if the first byte is non-ASCII) // plus 8 times the number of ASCII in text order before the // non-ASCII byte in the little-endian case or 8 times the number of ASCII in // text order before the non-ASCII byte in the big-endian case. let num_ascii = (zeros >> 3) as usize; + // Safety-usable invariant upheld here Some(ALU_ALIGNMENT + num_ascii) } + /// Safety: `src` must be valid for the reads of two `usize`s + /// + /// Safety-usable invariant: will return byte index of first non-ascii byte #[inline(always)] unsafe fn validate_ascii_stride(src: *const usize) -> Option { let word = *src; let second_word = *(src.add(1)); find_non_ascii(word, second_word) } + /// Safety-usable invariant: will return Some() when it encounters non-ASCII, with the first element in the Some being + /// guaranteed to be non-ASCII (> 127), and the second being the offset where it is found #[cfg_attr(feature = "cargo-clippy", allow(cast_ptr_alignment))] #[inline(always)] pub fn validate_ascii(slice: &[u8]) -> Option<(u8, usize)> { let src = slice.as_ptr(); let len = slice.len(); let mut offset = 0usize; let mut until_alignment = (ALU_ALIGNMENT - ((src as usize) & ALU_ALIGNMENT_MASK)) & ALU_ALIGNMENT_MASK; + // Safety: If this check fails we're valid to read `until_alignment + ALU_STRIDE_SIZE` elements if until_alignment + ALU_STRIDE_SIZE <= len { while until_alignment != 0 { let code_unit = slice[offset]; if code_unit > 127 { + // Safety-usable invairant upheld here return Some((code_unit, offset)); } offset += 1; until_alignment -= 1; } + // Safety: At this point we have read until_alignment elements and + // are valid for `ALU_STRIDE_SIZE` more. let len_minus_stride = len - ALU_STRIDE_SIZE; loop { + // Safety: we were valid for this read let ptr = unsafe { src.add(offset) as *const usize }; if let Some(num_ascii) = unsafe { validate_ascii_stride(ptr) } { offset += num_ascii; + // Safety-usable invairant upheld here using the invariant from validate_ascii_stride() return Some((unsafe { *(src.add(offset)) }, offset)); } offset += ALU_STRIDE_SIZE; + // Safety: This is `offset > ALU_STRIDE_SIZE` which means we always have at least `2 * ALU_STRIDE_SIZE` elements to munch next time. if offset > len_minus_stride { break; } } } while offset < len { let code_unit = slice[offset]; if code_unit > 127 { + // Safety-usable invairant upheld here return Some((code_unit, offset)); } offset += 1; } None } } @@ -1423,70 +1781,88 @@ cfg_if! { // vector reads without vector writes. pub const ALU_STRIDE_SIZE: usize = 8; pub const ALU_ALIGNMENT: usize = 4; pub const ALU_ALIGNMENT_MASK: usize = 3; } else { + // Safety: src points to two valid `usize`s, dst points to four valid `usize`s #[inline(always)] unsafe fn unpack_latin1_stride_alu(src: *const usize, dst: *mut usize) { + // Safety: src safety invariant used here let word = *src; let second_word = *(src.add(1)); + // Safety: dst safety invariant passed down unpack_alu(word, second_word, dst); } + // Safety: src points to four valid `usize`s, dst points to two valid `usize`s #[inline(always)] unsafe fn pack_latin1_stride_alu(src: *const usize, dst: *mut usize) { + // Safety: src safety invariant used here let first = *src; let second = *(src.add(1)); let third = *(src.add(2)); let fourth = *(src.add(3)); + // Safety: dst safety invariant passed down pack_alu(first, second, third, fourth, dst); } + // Safety: src points to two valid `usize`s, dst points to four valid `usize`s #[inline(always)] unsafe fn ascii_to_basic_latin_stride_alu(src: *const usize, dst: *mut usize) -> bool { + // Safety: src safety invariant used here let word = *src; let second_word = *(src.add(1)); // Check if the words contains non-ASCII if (word & ASCII_MASK) | (second_word & ASCII_MASK) != 0 { return false; } + // Safety: dst safety invariant passed down unpack_alu(word, second_word, dst); true } + // Safety: src points four valid `usize`s, dst points to two valid `usize`s #[inline(always)] unsafe fn basic_latin_to_ascii_stride_alu(src: *const usize, dst: *mut usize) -> bool { + // Safety: src safety invariant used here let first = *src; let second = *(src.add(1)); let third = *(src.add(2)); let fourth = *(src.add(3)); if (first & BASIC_LATIN_MASK) | (second & BASIC_LATIN_MASK) | (third & BASIC_LATIN_MASK) | (fourth & BASIC_LATIN_MASK) != 0 { return false; } + // Safety: dst safety invariant passed down pack_alu(first, second, third, fourth, dst); true } + // Safety: src, dst both point to two valid `usize`s each + // Safety-usable invariant: Will return byte index of first non-ascii byte. #[inline(always)] unsafe fn ascii_to_ascii_stride(src: *const usize, dst: *mut usize) -> Option { + // Safety: src safety invariant used here let word = *src; let second_word = *(src.add(1)); + // Safety: src safety invariant used here *dst = word; *(dst.add(1)) = second_word; + // Relies on safety-usable invariant here find_non_ascii(word, second_word) } basic_latin_alu!(ascii_to_basic_latin, u8, u16, ascii_to_basic_latin_stride_alu); basic_latin_alu!(basic_latin_to_ascii, u16, u8, basic_latin_to_ascii_stride_alu); latin1_alu!(unpack_latin1, u8, u16, unpack_latin1_stride_alu); latin1_alu!(pack_latin1, u16, u8, pack_latin1_stride_alu); + // Safety invariant upheld: ascii_to_ascii_stride will return byte index of first non-ascii if found ascii_alu!(ascii_to_ascii, u8, u8, ascii_to_ascii_stride); } } pub fn ascii_valid_up_to(bytes: &[u8]) -> usize { match validate_ascii(bytes) { None => bytes.len(), Some((_, num_valid)) => num_valid, diff --git a/third_party/rust/encoding_rs/src/handles.rs b/third_party/rust/encoding_rs/src/handles.rs --- a/third_party/rust/encoding_rs/src/handles.rs +++ b/third_party/rust/encoding_rs/src/handles.rs @@ -29,17 +29,17 @@ use crate::simd_funcs::*; #[cfg(all( feature = "simd-accel", any( target_feature = "sse2", all(target_endian = "little", target_arch = "aarch64"), all(target_endian = "little", target_feature = "neon") ) ))] -use packed_simd::u16x8; +use core::simd::u16x8; use super::DecoderResult; use super::EncoderResult; use crate::ascii::*; use crate::utf_8::convert_utf8_to_utf16_up_to_invalid; use crate::utf_8::utf8_valid_up_to; pub enum Space { @@ -85,84 +85,100 @@ impl Endian for LittleEndian { const OPPOSITE_ENDIAN: bool = false; #[cfg(target_endian = "big")] const OPPOSITE_ENDIAN: bool = true; } #[derive(Debug, Copy, Clone)] struct UnalignedU16Slice { + // Safety invariant: ptr must be valid for reading 2*len bytes ptr: *const u8, len: usize, } impl UnalignedU16Slice { + /// Safety: ptr must be valid for reading 2*len bytes #[inline(always)] pub unsafe fn new(ptr: *const u8, len: usize) -> UnalignedU16Slice { + // Safety: field invariant passed up to caller here UnalignedU16Slice { ptr, len } } #[inline(always)] pub fn trim_last(&mut self) { assert!(self.len > 0); + // Safety: invariant upheld here: a slice is still valid with a shorter len self.len -= 1; } #[inline(always)] pub fn at(&self, i: usize) -> u16 { use core::mem::MaybeUninit; assert!(i < self.len); unsafe { let mut u: MaybeUninit = MaybeUninit::uninit(); + // Safety: i is at most len - 1, which works here ::core::ptr::copy_nonoverlapping(self.ptr.add(i * 2), u.as_mut_ptr() as *mut u8, 2); + // Safety: valid read above lets us do this u.assume_init() } } #[cfg(feature = "simd-accel")] #[inline(always)] pub fn simd_at(&self, i: usize) -> u16x8 { + // Safety: i/len are on the scale of u16s, each one corresponds to 2 u8s assert!(i + SIMD_STRIDE_SIZE / 2 <= self.len); let byte_index = i * 2; + // Safety: load16_unaligned needs SIMD_STRIDE_SIZE=16 u8 elements to read, + // or 16/2 = 8 u16 elements to read. + // We have checked that we have at least that many above. + unsafe { to_u16_lanes(load16_unaligned(self.ptr.add(byte_index))) } } #[inline(always)] pub fn len(&self) -> usize { self.len } #[inline(always)] pub fn tail(&self, from: usize) -> UnalignedU16Slice { // XXX the return value should be restricted not to // outlive self. assert!(from <= self.len); + // Safety: This upholds the same invariant: `from` is in bounds and we're returning a shorter slice unsafe { UnalignedU16Slice::new(self.ptr.add(from * 2), self.len - from) } } #[cfg(feature = "simd-accel")] #[inline(always)] pub fn copy_bmp_to(&self, other: &mut [u16]) -> Option<(u16, usize)> { assert!(self.len <= other.len()); let mut offset = 0; + // Safety: SIMD_STRIDE_SIZE is measured in bytes, whereas len is in u16s. We check we can + // munch SIMD_STRIDE_SIZE / 2 u16s which means we can write SIMD_STRIDE_SIZE u8s if SIMD_STRIDE_SIZE / 2 <= self.len { let len_minus_stride = self.len - SIMD_STRIDE_SIZE / 2; loop { let mut simd = self.simd_at(offset); if E::OPPOSITE_ENDIAN { simd = simd_byte_swap(simd); } + // Safety: we have enough space on the other side to write this unsafe { store8_unaligned(other.as_mut_ptr().add(offset), simd); } if contains_surrogates(simd) { break; } offset += SIMD_STRIDE_SIZE / 2; + // Safety: This ensures we still have space for writing SIMD_STRIDE_SIZE u8s if offset > len_minus_stride { break; } } } while offset < self.len { let unit = swap_if_opposite_endian::(self.at(offset)); other[offset] = unit; @@ -231,33 +247,37 @@ fn copy_unaligned_basic_latin_to_ascii( src: UnalignedU16Slice, dst: &mut [u8], ) -> CopyAsciiResult { let len = ::core::cmp::min(src.len(), dst.len()); let mut offset = 0; + // Safety: This check ensures we are able to read/write at least SIMD_STRIDE_SIZE elements if SIMD_STRIDE_SIZE <= len { let len_minus_stride = len - SIMD_STRIDE_SIZE; loop { let mut first = src.simd_at(offset); let mut second = src.simd_at(offset + (SIMD_STRIDE_SIZE / 2)); if E::OPPOSITE_ENDIAN { first = simd_byte_swap(first); second = simd_byte_swap(second); } if !simd_is_basic_latin(first | second) { break; } let packed = simd_pack(first, second); + // Safety: We are able to write SIMD_STRIDE_SIZE elements in this iteration unsafe { store16_unaligned(dst.as_mut_ptr().add(offset), packed); } offset += SIMD_STRIDE_SIZE; + // Safety: This is `offset > len - SIMD_STRIDE_SIZE`, which ensures that we can write at least SIMD_STRIDE_SIZE elements + // in the next iteration if offset > len_minus_stride { break; } } } copy_unaligned_basic_latin_to_ascii_alu::(src.tail(offset), &mut dst[offset..], offset) } @@ -632,94 +652,106 @@ impl<'a> Utf16Destination<'a> { #[inline(always)] fn write_astral(&mut self, astral: u32) { debug_assert!(astral > 0xFFFF); debug_assert!(astral <= 0x10_FFFF); self.write_code_unit((0xD7C0 + (astral >> 10)) as u16); self.write_code_unit((0xDC00 + (astral & 0x3FF)) as u16); } #[inline(always)] - pub fn write_surrogate_pair(&mut self, high: u16, low: u16) { + fn write_surrogate_pair(&mut self, high: u16, low: u16) { self.write_code_unit(high); self.write_code_unit(low); } #[inline(always)] fn write_big5_combination(&mut self, combined: u16, combining: u16) { self.write_bmp_excl_ascii(combined); self.write_bmp_excl_ascii(combining); } + // Safety-usable invariant: CopyAsciiResult::GoOn will only contain bytes >=0x80 #[inline(always)] pub fn copy_ascii_from_check_space_bmp<'b>( &'b mut self, source: &mut ByteSource, ) -> CopyAsciiResult<(DecoderResult, usize, usize), (u8, Utf16BmpHandle<'b, 'a>)> { let non_ascii_ret = { let src_remaining = &source.slice[source.pos..]; let dst_remaining = &mut self.slice[self.pos..]; let (pending, length) = if dst_remaining.len() < src_remaining.len() { (DecoderResult::OutputFull, dst_remaining.len()) } else { (DecoderResult::InputEmpty, src_remaining.len()) }; + // Safety: This function is documented as needing valid pointers for src/dest and len, which + // is true since we've passed the minumum length of the two match unsafe { ascii_to_basic_latin(src_remaining.as_ptr(), dst_remaining.as_mut_ptr(), length) } { None => { source.pos += length; self.pos += length; return CopyAsciiResult::Stop((pending, source.pos, self.pos)); } + // Safety: the function is documented as returning bytes >=0x80 in the Some Some((non_ascii, consumed)) => { source.pos += consumed; self.pos += consumed; source.pos += 1; // +1 for non_ascii + // Safety: non-ascii bubbled out here non_ascii } } }; + // Safety: non-ascii returned here CopyAsciiResult::GoOn((non_ascii_ret, Utf16BmpHandle::new(self))) } + // Safety-usable invariant: CopyAsciiResult::GoOn will only contain bytes >=0x80 #[inline(always)] pub fn copy_ascii_from_check_space_astral<'b>( &'b mut self, source: &mut ByteSource, ) -> CopyAsciiResult<(DecoderResult, usize, usize), (u8, Utf16AstralHandle<'b, 'a>)> { let non_ascii_ret = { let dst_len = self.slice.len(); let src_remaining = &source.slice[source.pos..]; let dst_remaining = &mut self.slice[self.pos..]; let (pending, length) = if dst_remaining.len() < src_remaining.len() { (DecoderResult::OutputFull, dst_remaining.len()) } else { (DecoderResult::InputEmpty, src_remaining.len()) }; + // Safety: This function is documented as needing valid pointers for src/dest and len, which + // is true since we've passed the minumum length of the two match unsafe { ascii_to_basic_latin(src_remaining.as_ptr(), dst_remaining.as_mut_ptr(), length) } { None => { source.pos += length; self.pos += length; return CopyAsciiResult::Stop((pending, source.pos, self.pos)); } + // Safety: the function is documented as returning bytes >=0x80 in the Some Some((non_ascii, consumed)) => { source.pos += consumed; self.pos += consumed; if self.pos + 1 < dst_len { source.pos += 1; // +1 for non_ascii + // Safety: non-ascii bubbled out here non_ascii } else { return CopyAsciiResult::Stop(( DecoderResult::OutputFull, source.pos, self.pos, )); } } } }; + // Safety: non-ascii returned here CopyAsciiResult::GoOn((non_ascii_ret, Utf16AstralHandle::new(self))) } #[inline(always)] pub fn copy_utf8_up_to_invalid_from(&mut self, source: &mut ByteSource) { let src_remaining = &source.slice[source.pos..]; let dst_remaining = &mut self.slice[self.pos..]; let (read, written) = convert_utf8_to_utf16_up_to_invalid(src_remaining, dst_remaining); source.pos += read; diff --git a/third_party/rust/encoding_rs/src/lib.rs b/third_party/rust/encoding_rs/src/lib.rs --- a/third_party/rust/encoding_rs/src/lib.rs +++ b/third_party/rust/encoding_rs/src/lib.rs @@ -684,37 +684,26 @@ //! TIS-620windows-874 //! //! //! //! See the section [_UTF-16LE, UTF-16BE and Unicode Encoding Schemes_](#utf-16le-utf-16be-and-unicode-encoding-schemes) //! for discussion about the UTF-16 family. #![no_std] -#![cfg_attr(feature = "simd-accel", feature(core_intrinsics))] +#![cfg_attr(feature = "simd-accel", feature(core_intrinsics, portable_simd))] #[cfg(feature = "alloc")] #[cfg_attr(test, macro_use)] extern crate alloc; extern crate core; #[macro_use] extern crate cfg_if; -#[cfg(all( - feature = "simd-accel", - any( - target_feature = "sse2", - all(target_endian = "little", target_arch = "aarch64"), - all(target_endian = "little", target_feature = "neon") - ) -))] -#[macro_use(shuffle)] -extern crate packed_simd; - #[cfg(feature = "serde")] extern crate serde; #[cfg(all(test, feature = "serde"))] extern crate bincode; #[cfg(all(test, feature = "serde"))] #[macro_use] extern crate serde_derive; diff --git a/third_party/rust/encoding_rs/src/mem.rs b/third_party/rust/encoding_rs/src/mem.rs --- a/third_party/rust/encoding_rs/src/mem.rs +++ b/third_party/rust/encoding_rs/src/mem.rs @@ -111,16 +111,21 @@ macro_rules! by_unit_check_alu { until_alignment -= 1; } if accu >= $bound { return false; } } let len_minus_stride = len - ALU_ALIGNMENT / unit_size; if offset + (4 * (ALU_ALIGNMENT / unit_size)) <= len { + // Safety: the above check lets us perform 4 consecutive reads of + // length ALU_ALIGNMENT / unit_size. ALU_ALIGNMENT is the size of usize, and unit_size + // is the size of the `src` pointer, so this is equal to performing four usize reads. + // + // This invariant is upheld on all loop iterations let len_minus_unroll = len - (4 * (ALU_ALIGNMENT / unit_size)); loop { let unroll_accu = unsafe { *(src.add(offset) as *const usize) } | unsafe { *(src.add(offset + (ALU_ALIGNMENT / unit_size)) as *const usize) } | unsafe { *(src.add(offset + (2 * (ALU_ALIGNMENT / unit_size))) @@ -129,22 +134,24 @@ macro_rules! by_unit_check_alu { | unsafe { *(src.add(offset + (3 * (ALU_ALIGNMENT / unit_size))) as *const usize) }; if unroll_accu & $mask != 0 { return false; } offset += 4 * (ALU_ALIGNMENT / unit_size); + // Safety: this check lets us continue to perform the 4 reads earlier if offset > len_minus_unroll { break; } } } while offset <= len_minus_stride { + // Safety: the above check lets us perform one usize read. accu |= unsafe { *(src.add(offset) as *const usize) }; offset += ALU_ALIGNMENT / unit_size; } } } for &unit in &buffer[offset..] { accu |= unit as usize; } @@ -184,16 +191,21 @@ macro_rules! by_unit_check_simd { until_alignment -= 1; } if accu >= $bound { return false; } } let len_minus_stride = len - SIMD_STRIDE_SIZE / unit_size; if offset + (4 * (SIMD_STRIDE_SIZE / unit_size)) <= len { + // Safety: the above check lets us perform 4 consecutive reads of + // length SIMD_STRIDE_SIZE / unit_size. SIMD_STRIDE_SIZE is the size of $simd_ty, and unit_size + // is the size of the `src` pointer, so this is equal to performing four $simd_ty reads. + // + // This invariant is upheld on all loop iterations let len_minus_unroll = len - (4 * (SIMD_STRIDE_SIZE / unit_size)); loop { let unroll_accu = unsafe { *(src.add(offset) as *const $simd_ty) } | unsafe { *(src.add(offset + (SIMD_STRIDE_SIZE / unit_size)) as *const $simd_ty) } | unsafe { @@ -203,23 +215,25 @@ macro_rules! by_unit_check_simd { | unsafe { *(src.add(offset + (3 * (SIMD_STRIDE_SIZE / unit_size))) as *const $simd_ty) }; if !$func(unroll_accu) { return false; } offset += 4 * (SIMD_STRIDE_SIZE / unit_size); + // Safety: this check lets us continue to perform the 4 reads earlier if offset > len_minus_unroll { break; } } } let mut simd_accu = $splat; while offset <= len_minus_stride { + // Safety: the above check lets us perform one $simd_ty read. simd_accu = simd_accu | unsafe { *(src.add(offset) as *const $simd_ty) }; offset += SIMD_STRIDE_SIZE / unit_size; } if !$func(simd_accu) { return false; } } } @@ -229,18 +243,18 @@ macro_rules! by_unit_check_simd { accu < $bound } }; } cfg_if! { if #[cfg(all(feature = "simd-accel", any(target_feature = "sse2", all(target_endian = "little", target_arch = "aarch64"), all(target_endian = "little", target_feature = "neon"))))] { use crate::simd_funcs::*; - use packed_simd::u8x16; - use packed_simd::u16x8; + use core::simd::u8x16; + use core::simd::u16x8; const SIMD_ALIGNMENT: usize = 16; const SIMD_ALIGNMENT_MASK: usize = 15; by_unit_check_simd!(is_ascii_impl, u8, u8x16::splat(0), u8x16, 0x80, simd_is_ascii); by_unit_check_simd!(is_basic_latin_impl, u16, u16x8::splat(0), u16x8, 0x80, simd_is_basic_latin); by_unit_check_simd!(is_utf16_latin1_impl, u16, u16x8::splat(0), u16x8, 0x100, simd_is_latin1); diff --git a/third_party/rust/encoding_rs/src/simd_funcs.rs b/third_party/rust/encoding_rs/src/simd_funcs.rs --- a/third_party/rust/encoding_rs/src/simd_funcs.rs +++ b/third_party/rust/encoding_rs/src/simd_funcs.rs @@ -2,65 +2,84 @@ // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. -use packed_simd::u16x8; -use packed_simd::u8x16; -use packed_simd::IntoBits; +use any_all_workaround::all_mask16x8; +use any_all_workaround::all_mask8x16; +use any_all_workaround::any_mask16x8; +use any_all_workaround::any_mask8x16; +use core::simd::cmp::SimdPartialEq; +use core::simd::cmp::SimdPartialOrd; +use core::simd::mask16x8; +use core::simd::mask8x16; +use core::simd::simd_swizzle; +use core::simd::u16x8; +use core::simd::u8x16; +use core::simd::ToBytes; // TODO: Migrate unaligned access to stdlib code if/when the RFC // https://github.com/rust-lang/rfcs/pull/1725 is implemented. +/// Safety invariant: ptr must be valid for an unaligned read of 16 bytes #[inline(always)] pub unsafe fn load16_unaligned(ptr: *const u8) -> u8x16 { - let mut simd = ::core::mem::uninitialized(); - ::core::ptr::copy_nonoverlapping(ptr, &mut simd as *mut u8x16 as *mut u8, 16); - simd + let mut simd = ::core::mem::MaybeUninit::::uninit(); + ::core::ptr::copy_nonoverlapping(ptr, simd.as_mut_ptr() as *mut u8, 16); + // Safety: copied 16 bytes of initialized memory into this, it is now initialized + simd.assume_init() } +/// Safety invariant: ptr must be valid for an aligned-for-u8x16 read of 16 bytes #[allow(dead_code)] #[inline(always)] pub unsafe fn load16_aligned(ptr: *const u8) -> u8x16 { *(ptr as *const u8x16) } +/// Safety invariant: ptr must be valid for an unaligned store of 16 bytes #[inline(always)] pub unsafe fn store16_unaligned(ptr: *mut u8, s: u8x16) { ::core::ptr::copy_nonoverlapping(&s as *const u8x16 as *const u8, ptr, 16); } +/// Safety invariant: ptr must be valid for an aligned-for-u8x16 store of 16 bytes #[allow(dead_code)] #[inline(always)] pub unsafe fn store16_aligned(ptr: *mut u8, s: u8x16) { *(ptr as *mut u8x16) = s; } +/// Safety invariant: ptr must be valid for an unaligned read of 16 bytes #[inline(always)] pub unsafe fn load8_unaligned(ptr: *const u16) -> u16x8 { - let mut simd = ::core::mem::uninitialized(); - ::core::ptr::copy_nonoverlapping(ptr as *const u8, &mut simd as *mut u16x8 as *mut u8, 16); - simd + let mut simd = ::core::mem::MaybeUninit::::uninit(); + ::core::ptr::copy_nonoverlapping(ptr as *const u8, simd.as_mut_ptr() as *mut u8, 16); + // Safety: copied 16 bytes of initialized memory into this, it is now initialized + simd.assume_init() } +/// Safety invariant: ptr must be valid for an aligned-for-u16x8 read of 16 bytes #[allow(dead_code)] #[inline(always)] pub unsafe fn load8_aligned(ptr: *const u16) -> u16x8 { *(ptr as *const u16x8) } +/// Safety invariant: ptr must be valid for an unaligned store of 16 bytes #[inline(always)] pub unsafe fn store8_unaligned(ptr: *mut u16, s: u16x8) { ::core::ptr::copy_nonoverlapping(&s as *const u16x8 as *const u8, ptr as *mut u8, 16); } +/// Safety invariant: ptr must be valid for an aligned-for-u16x8 store of 16 bytes #[allow(dead_code)] #[inline(always)] pub unsafe fn store8_aligned(ptr: *mut u16, s: u16x8) { *(ptr as *mut u16x8) = s; } cfg_if! { if #[cfg(all(target_feature = "sse2", target_arch = "x86_64"))] { @@ -95,234 +114,241 @@ cfg_if! { pub fn simd_byte_swap(s: u16x8) -> u16x8 { let left = s << 8; let right = s >> 8; left | right } #[inline(always)] pub fn to_u16_lanes(s: u8x16) -> u16x8 { - s.into_bits() + u16x8::from_ne_bytes(s) } cfg_if! { if #[cfg(target_feature = "sse2")] { // Expose low-level mask instead of higher-level conclusion, // because the non-ASCII case would perform less well otherwise. + // Safety-usable invariant: This returned value is whether each high bit is set #[inline(always)] pub fn mask_ascii(s: u8x16) -> i32 { unsafe { - _mm_movemask_epi8(s.into_bits()) + _mm_movemask_epi8(s.into()) } } } else { } } cfg_if! { if #[cfg(target_feature = "sse2")] { #[inline(always)] pub fn simd_is_ascii(s: u8x16) -> bool { unsafe { - _mm_movemask_epi8(s.into_bits()) == 0 + // Safety: We have cfg()d the correct platform + _mm_movemask_epi8(s.into()) == 0 } } } else if #[cfg(target_arch = "aarch64")]{ #[inline(always)] pub fn simd_is_ascii(s: u8x16) -> bool { unsafe { - vmaxvq_u8(s.into_bits()) < 0x80 + // Safety: We have cfg()d the correct platform + vmaxvq_u8(s.into()) < 0x80 } } } else { #[inline(always)] pub fn simd_is_ascii(s: u8x16) -> bool { // This optimizes better on ARM than // the lt formulation. let highest_ascii = u8x16::splat(0x7F); - !s.gt(highest_ascii).any() + !any_mask8x16(s.simd_gt(highest_ascii)) } } } cfg_if! { if #[cfg(target_feature = "sse2")] { #[inline(always)] pub fn simd_is_str_latin1(s: u8x16) -> bool { if simd_is_ascii(s) { return true; } let above_str_latin1 = u8x16::splat(0xC4); - s.lt(above_str_latin1).all() + s.simd_lt(above_str_latin1).all() } } else if #[cfg(target_arch = "aarch64")]{ #[inline(always)] pub fn simd_is_str_latin1(s: u8x16) -> bool { unsafe { - vmaxvq_u8(s.into_bits()) < 0xC4 + // Safety: We have cfg()d the correct platform + vmaxvq_u8(s.into()) < 0xC4 } } } else { #[inline(always)] pub fn simd_is_str_latin1(s: u8x16) -> bool { let above_str_latin1 = u8x16::splat(0xC4); - s.lt(above_str_latin1).all() + all_mask8x16(s.simd_lt(above_str_latin1)) } } } cfg_if! { if #[cfg(target_arch = "aarch64")]{ #[inline(always)] pub fn simd_is_basic_latin(s: u16x8) -> bool { unsafe { - vmaxvq_u16(s.into_bits()) < 0x80 + // Safety: We have cfg()d the correct platform + vmaxvq_u16(s.into()) < 0x80 } } #[inline(always)] pub fn simd_is_latin1(s: u16x8) -> bool { unsafe { - vmaxvq_u16(s.into_bits()) < 0x100 + // Safety: We have cfg()d the correct platform + vmaxvq_u16(s.into()) < 0x100 } } } else { #[inline(always)] pub fn simd_is_basic_latin(s: u16x8) -> bool { let above_ascii = u16x8::splat(0x80); - s.lt(above_ascii).all() + all_mask16x8(s.simd_lt(above_ascii)) } #[inline(always)] pub fn simd_is_latin1(s: u16x8) -> bool { // For some reason, on SSE2 this formulation // seems faster in this case while the above // function is better the other way round... let highest_latin1 = u16x8::splat(0xFF); - !s.gt(highest_latin1).any() + !any_mask16x8(s.simd_gt(highest_latin1)) } } } #[inline(always)] pub fn contains_surrogates(s: u16x8) -> bool { let mask = u16x8::splat(0xF800); let surrogate_bits = u16x8::splat(0xD800); - (s & mask).eq(surrogate_bits).any() + any_mask16x8((s & mask).simd_eq(surrogate_bits)) } cfg_if! { if #[cfg(target_arch = "aarch64")]{ macro_rules! aarch64_return_false_if_below_hebrew { ($s:ident) => ({ unsafe { - if vmaxvq_u16($s.into_bits()) < 0x0590 { + // Safety: We have cfg()d the correct platform + if vmaxvq_u16($s.into()) < 0x0590 { return false; } } }) } macro_rules! non_aarch64_return_false_if_all { ($s:ident) => () } } else { macro_rules! aarch64_return_false_if_below_hebrew { ($s:ident) => () } macro_rules! non_aarch64_return_false_if_all { ($s:ident) => ({ - if $s.all() { + if all_mask16x8($s) { return false; } }) } } } macro_rules! in_range16x8 { ($s:ident, $start:expr, $end:expr) => {{ // SIMD sub is wrapping - ($s - u16x8::splat($start)).lt(u16x8::splat($end - $start)) + ($s - u16x8::splat($start)).simd_lt(u16x8::splat($end - $start)) }}; } #[inline(always)] pub fn is_u16x8_bidi(s: u16x8) -> bool { // We try to first quickly refute the RTLness of the vector. If that // fails, we do the real RTL check, so in that case we end up wasting // the work for the up-front quick checks. Even the quick-check is // two-fold in order to return `false` ASAP if everything is below // Hebrew. aarch64_return_false_if_below_hebrew!(s); - let below_hebrew = s.lt(u16x8::splat(0x0590)); + let below_hebrew = s.simd_lt(u16x8::splat(0x0590)); non_aarch64_return_false_if_all!(below_hebrew); - if (below_hebrew | in_range16x8!(s, 0x0900, 0x200F) | in_range16x8!(s, 0x2068, 0xD802)).all() { + if all_mask16x8( + below_hebrew | in_range16x8!(s, 0x0900, 0x200F) | in_range16x8!(s, 0x2068, 0xD802), + ) { return false; } // Quick refutation failed. Let's do the full check. - (in_range16x8!(s, 0x0590, 0x0900) - | in_range16x8!(s, 0xFB1D, 0xFE00) - | in_range16x8!(s, 0xFE70, 0xFEFF) - | in_range16x8!(s, 0xD802, 0xD804) - | in_range16x8!(s, 0xD83A, 0xD83C) - | s.eq(u16x8::splat(0x200F)) - | s.eq(u16x8::splat(0x202B)) - | s.eq(u16x8::splat(0x202E)) - | s.eq(u16x8::splat(0x2067))) - .any() + any_mask16x8( + (in_range16x8!(s, 0x0590, 0x0900) + | in_range16x8!(s, 0xFB1D, 0xFE00) + | in_range16x8!(s, 0xFE70, 0xFEFF) + | in_range16x8!(s, 0xD802, 0xD804) + | in_range16x8!(s, 0xD83A, 0xD83C) + | s.simd_eq(u16x8::splat(0x200F)) + | s.simd_eq(u16x8::splat(0x202B)) + | s.simd_eq(u16x8::splat(0x202E)) + | s.simd_eq(u16x8::splat(0x2067))), + ) } #[inline(always)] pub fn simd_unpack(s: u8x16) -> (u16x8, u16x8) { - unsafe { - let first: u8x16 = shuffle!( - s, - u8x16::splat(0), - [0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23] - ); - let second: u8x16 = shuffle!( - s, - u8x16::splat(0), - [8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31] - ); - (first.into_bits(), second.into_bits()) - } + let first: u8x16 = simd_swizzle!( + s, + u8x16::splat(0), + [0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23] + ); + let second: u8x16 = simd_swizzle!( + s, + u8x16::splat(0), + [8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31] + ); + (u16x8::from_ne_bytes(first), u16x8::from_ne_bytes(second)) } cfg_if! { if #[cfg(target_feature = "sse2")] { #[inline(always)] pub fn simd_pack(a: u16x8, b: u16x8) -> u8x16 { unsafe { - _mm_packus_epi16(a.into_bits(), b.into_bits()).into_bits() + // Safety: We have cfg()d the correct platform + _mm_packus_epi16(a.into(), b.into()).into() } } } else { #[inline(always)] pub fn simd_pack(a: u16x8, b: u16x8) -> u8x16 { - unsafe { - let first: u8x16 = a.into_bits(); - let second: u8x16 = b.into_bits(); - shuffle!( - first, - second, - [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30] - ) - } + let first: u8x16 = a.to_ne_bytes(); + let second: u8x16 = b.to_ne_bytes(); + simd_swizzle!( + first, + second, + [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30] + ) } } } #[cfg(test)] mod tests { use super::*; use alloc::vec::Vec; diff --git a/third_party/rust/encoding_rs/src/single_byte.rs b/third_party/rust/encoding_rs/src/single_byte.rs --- a/third_party/rust/encoding_rs/src/single_byte.rs +++ b/third_party/rust/encoding_rs/src/single_byte.rs @@ -48,16 +48,19 @@ impl SingleByteDecoder { CopyAsciiResult::GoOn((mut non_ascii, mut handle)) => 'middle: loop { // Start non-boilerplate // // Since the non-ASCIIness of `non_ascii` is hidden from // the optimizer, it can't figure out that it's OK to // statically omit the bound check when accessing // `[u16; 128]` with an index // `non_ascii as usize - 0x80usize`. + // + // Safety: `non_ascii` is a u8 byte >=0x80, from the invariants + // on Utf8Destination::copy_ascii_from_check_space_bmp() let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; // let mapped = self.table[non_ascii as usize - 0x80usize]; if mapped == 0u16 { return ( DecoderResult::Malformed(1, 0), source.consumed(), handle.written(), @@ -146,82 +149,103 @@ impl SingleByteDecoder { dst: &mut [u16], _last: bool, ) -> (DecoderResult, usize, usize) { let (pending, length) = if dst.len() < src.len() { (DecoderResult::OutputFull, dst.len()) } else { (DecoderResult::InputEmpty, src.len()) }; + // Safety invariant: converted <= length. Quite often we have `converted < length` + // which will be separately marked. let mut converted = 0usize; 'outermost: loop { match unsafe { + // Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x` ascii_to_basic_latin( src.as_ptr().add(converted), dst.as_mut_ptr().add(converted), length - converted, ) } { None => { return (pending, length, length); } Some((mut non_ascii, consumed)) => { + // Safety invariant: `converted <= length` upheld, since this can only consume + // up to `length - converted` bytes. + // + // Furthermore, in this context, + // we can assume `converted < length` since this branch is only ever hit when + // ascii_to_basic_latin fails to consume the entire slice converted += consumed; 'middle: loop { // `converted` doesn't count the reading of `non_ascii` yet. // Since the non-ASCIIness of `non_ascii` is hidden from // the optimizer, it can't figure out that it's OK to // statically omit the bound check when accessing // `[u16; 128]` with an index // `non_ascii as usize - 0x80usize`. + // + // Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to + // the invariants of `ascii_to_basic_latin()`, and our table has enough space for that. let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; // let mapped = self.table[non_ascii as usize - 0x80usize]; if mapped == 0u16 { return ( DecoderResult::Malformed(1, 0), converted + 1, // +1 `for non_ascii` converted, ); } unsafe { - // The bound check has already been performed + // Safety: As mentioned above, `converted < length` *(dst.get_unchecked_mut(converted)) = mapped; } + // Safety: `converted <= length` upheld, since `converted < length` before this converted += 1; // Next, handle ASCII punctuation and non-ASCII without // going back to ASCII acceleration. Non-ASCII scripts // use ASCII punctuation, so this avoid going to // acceleration just for punctuation/space and then // failing. This is a significant boost to non-ASCII // scripts. // TODO: Split out Latin converters without this part // this stuff makes Latin script-conversion slower. if converted == length { return (pending, length, length); } + // Safety: We are back to `converted < length` because of the == above + // and can perform this check. let mut b = unsafe { *(src.get_unchecked(converted)) }; + // Safety: `converted < length` is upheld for this loop 'innermost: loop { if b > 127 { non_ascii = b; continue 'middle; } // Testing on Haswell says that we should write the // byte unconditionally instead of trying to unread it // to make it part of the next SIMD stride. unsafe { + // Safety: `converted < length` is true for this loop *(dst.get_unchecked_mut(converted)) = u16::from(b); } + // Safety: We are now at `converted <= length`. We should *not* `continue` + // the loop without reverifying converted += 1; if b < 60 { // We've got punctuation if converted == length { return (pending, length, length); } + // Safety: we're back to `converted <= length` because of the == above b = unsafe { *(src.get_unchecked(converted)) }; + // Safety: The loop continues as `converted < length` continue 'innermost; } // We've got markup or ASCII text continue 'outermost; } } } } @@ -229,16 +253,18 @@ impl SingleByteDecoder { } pub fn latin1_byte_compatible_up_to(&self, buffer: &[u8]) -> usize { let mut bytes = buffer; let mut total = 0; loop { if let Some((non_ascii, offset)) = validate_ascii(bytes) { total += offset; + // Safety: We can rely on `non_ascii` being between `0x80` and `0xFF` due to + // the invariants of `ascii_to_basic_latin()`, and our table has enough space for that. let mapped = unsafe { *(self.table.get_unchecked(non_ascii as usize - 0x80usize)) }; if mapped != u16::from(non_ascii) { return total; } total += 1; bytes = &bytes[offset + 1..]; } else { return total; @@ -379,64 +405,89 @@ impl SingleByteEncoder { dst: &mut [u8], _last: bool, ) -> (EncoderResult, usize, usize) { let (pending, length) = if dst.len() < src.len() { (EncoderResult::OutputFull, dst.len()) } else { (EncoderResult::InputEmpty, src.len()) }; + // Safety invariant: converted <= length. Quite often we have `converted < length` + // which will be separately marked. let mut converted = 0usize; 'outermost: loop { match unsafe { + // Safety: length is the minimum length, `src/dst + x` will always be valid for reads/writes of `len - x` basic_latin_to_ascii( src.as_ptr().add(converted), dst.as_mut_ptr().add(converted), length - converted, ) } { None => { return (pending, length, length); } Some((mut non_ascii, consumed)) => { + // Safety invariant: `converted <= length` upheld, since this can only consume + // up to `length - converted` bytes. + // + // Furthermore, in this context, + // we can assume `converted < length` since this branch is only ever hit when + // ascii_to_basic_latin fails to consume the entire slice converted += consumed; 'middle: loop { // `converted` doesn't count the reading of `non_ascii` yet. match self.encode_u16(non_ascii) { Some(byte) => { unsafe { + // Safety: we're allowed this access since `converted < length` *(dst.get_unchecked_mut(converted)) = byte; } converted += 1; + // `converted <= length` now } None => { // At this point, we need to know if we // have a surrogate. let high_bits = non_ascii & 0xFC00u16; if high_bits == 0xD800u16 { // high surrogate if converted + 1 == length { // End of buffer. This surrogate is unpaired. return ( EncoderResult::Unmappable('\u{FFFD}'), converted + 1, // +1 `for non_ascii` converted, ); } + // Safety: convered < length from outside the match, and `converted + 1 != length`, + // So `converted + 1 < length` as well. We're in bounds let second = u32::from(unsafe { *src.get_unchecked(converted + 1) }); if second & 0xFC00u32 != 0xDC00u32 { return ( EncoderResult::Unmappable('\u{FFFD}'), converted + 1, // +1 `for non_ascii` converted, ); } // The next code unit is a low surrogate. let astral: char = unsafe { + // Safety: We can rely on non_ascii being 0xD800-0xDBFF since the high bits are 0xD800 + // Then, (non_ascii << 10 - 0xD800 << 10) becomes between (0 to 0x3FF) << 10, which is between + // 0x400 to 0xffc00. Adding the 0x10000 gives a range of 0x10400 to 0x10fc00. Subtracting the 0xDC00 + // gives 0x2800 to 0x102000 + // The second term is between 0xDC00 and 0xDFFF from the check above. This gives a maximum + // possible range of (0x10400 + 0xDC00) to (0x102000 + 0xDFFF) which is 0x1E000 to 0x10ffff. + // This is in range. + // + // From a Unicode principles perspective this can also be verified as we have checked that `non_ascii` is a high surrogate + // (0xD800..=0xDBFF), and that `second` is a low surrogate (`0xDC00..=0xDFFF`), and we are applying reverse of the UTC16 transformation + // algorithm , by applying the high surrogate - 0xD800 to the + // high ten bits, and the low surrogate - 0xDc00 to the low ten bits, and then adding 0x10000 ::core::char::from_u32_unchecked( (u32::from(non_ascii) << 10) + second - (((0xD800u32 << 10) - 0x1_0000u32) + 0xDC00u32), ) }; return ( EncoderResult::Unmappable(astral), converted + 2, // +2 `for non_ascii` and `second` @@ -451,52 +502,63 @@ impl SingleByteEncoder { converted, ); } return ( EncoderResult::unmappable_from_bmp(non_ascii), converted + 1, // +1 `for non_ascii` converted, ); + // Safety: This branch diverges, so no need to uphold invariants on `converted` } } // Next, handle ASCII punctuation and non-ASCII without // going back to ASCII acceleration. Non-ASCII scripts // use ASCII punctuation, so this avoid going to // acceleration just for punctuation/space and then // failing. This is a significant boost to non-ASCII // scripts. // TODO: Split out Latin converters without this part // this stuff makes Latin script-conversion slower. if converted == length { return (pending, length, length); } + // Safety: we're back to `converted < length` due to the == above and can perform + // the unchecked read let mut unit = unsafe { *(src.get_unchecked(converted)) }; 'innermost: loop { + // Safety: This loop always begins with `converted < length`, see + // the invariant outside and the comment on the continue below if unit > 127 { non_ascii = unit; continue 'middle; } // Testing on Haswell says that we should write the // byte unconditionally instead of trying to unread it // to make it part of the next SIMD stride. unsafe { + // Safety: Can rely on converted < length *(dst.get_unchecked_mut(converted)) = unit as u8; } converted += 1; + // `converted <= length` here if unit < 60 { // We've got punctuation if converted == length { return (pending, length, length); } + // Safety: `converted < length` due to the == above. The read is safe. unit = unsafe { *(src.get_unchecked(converted)) }; + // Safety: This only happens if `converted < length`, maintaining it continue 'innermost; } // We've got markup or ASCII text continue 'outermost; + // Safety: All other routes to here diverge so the continue is the only + // way to run the innermost loop. } } } } } } } diff --git a/third_party/rust/encoding_rs/src/x_user_defined.rs b/third_party/rust/encoding_rs/src/x_user_defined.rs --- a/third_party/rust/encoding_rs/src/x_user_defined.rs +++ b/third_party/rust/encoding_rs/src/x_user_defined.rs @@ -9,22 +9,23 @@ use super::*; use crate::handles::*; use crate::variant::*; cfg_if! { if #[cfg(feature = "simd-accel")] { use simd_funcs::*; - use packed_simd::u16x8; + use core::simd::u16x8; + use core::simd::cmp::SimdPartialOrd; #[inline(always)] fn shift_upper(unpacked: u16x8) -> u16x8 { let highest_ascii = u16x8::splat(0x7F); - unpacked + unpacked.gt(highest_ascii).select(u16x8::splat(0xF700), u16x8::splat(0)) } + unpacked + unpacked.simd_gt(highest_ascii).select(u16x8::splat(0xF700), u16x8::splat(0)) } } else { } } pub struct UserDefinedDecoder; impl UserDefinedDecoder { pub fn new() -> VariantDecoder { @@ -111,20 +112,25 @@ impl UserDefinedDecoder { } else { (DecoderResult::InputEmpty, src.len()) }; // Not bothering with alignment let tail_start = length & !0xF; let simd_iterations = length >> 4; let src_ptr = src.as_ptr(); let dst_ptr = dst.as_mut_ptr(); + // Safety: This is `for i in 0..length / 16` for i in 0..simd_iterations { + // Safety: This is in bounds: length is the minumum valid length for both src/dst + // and i ranges to length/16, so multiplying by 16 will always be `< length` and can do + // a 16 byte read let input = unsafe { load16_unaligned(src_ptr.add(i * 16)) }; let (first, second) = simd_unpack(input); unsafe { + // Safety: same as above, but this is two consecutive 8-byte reads store8_unaligned(dst_ptr.add(i * 16), shift_upper(first)); store8_unaligned(dst_ptr.add((i * 16) + 8), shift_upper(second)); } } let src_tail = &src[tail_start..length]; let dst_tail = &mut dst[tail_start..length]; src_tail .iter() diff --git a/third_party/rust/encoding_rs/.cargo-checksum.json b/third_party/rust/encoding_rs/.cargo-checksum.json --- a/third_party/rust/encoding_rs/.cargo-checksum.json +++ b/third_party/rust/encoding_rs/.cargo-checksum.json @@ -1 +1 @@ -{"files":{"CONTRIBUTING.md":"ca1901f3e8532fb4cec894fd3664f0eaa898c0c4b961d1b992d1ed54eacf362a","COPYRIGHT":"11789f45bb180841cd362a5eee6789c68ddb573a11105e30768c308a6add0190","Cargo.toml":"42fa83322aa9fd6723b77d35d0cacb92cbb6e7f573ce11c55f5225292866f8f4","Ideas.md":"b7452893f500163868d8de52c09addaf91e1632454ed02e892c467ed7ec39dbd","LICENSE-APACHE":"cfc7749b96f63bd31c3c42b5c471bf756814053e847c10f3eb003417bc523d30","LICENSE-MIT":"3fa4ca83dcc9237839b1bdeb2e6d16bdfb5ec0c5ce42b24694d8bbf0dcbef72c","LICENSE-WHATWG":"838118388fe5c2e7f1dbbaeed13e1c7f3ebf88be91319c7c1d77c18e987d1a50","README.md":"d938e8ab0b9ab67e74a1a4f48f23fdce956d0ad3a3f6147ae7612a92763c88d5","ci/miri.sh":"43cb8d82f49e3bfe2d2274b6ccd6f0714a4188ccef0cecc040829883cfdbee25","doc/Big5.txt":"f73a2edc5cb6c2d140ba6e07f4542e1c4a234950378acde1df93480f0ca0be0b","doc/EUC-JP.txt":"ee2818b907d0137f40a9ab9fd525fc700a44dbdddb6cf0c157a656566bae4bf1","doc/EUC-KR.txt":"71d9e2ccf3b124e8bdfb433c8cf2773fd878077038d0cec3c7237a50f4a78a30","doc/GBK.txt":"c1b522b5a799884e5001da661f42c5a8f4d0acb9ef1d74b206f22b5f65365606","doc/IBM866.txt":"a5a433e804d0f83af785015179fbc1d9b0eaf1f7960efcd04093e136b51fbd0e","doc/ISO-2022-JP.txt":"af86684f5a8f0e2868d7b2c292860140c3d2e5527530ca091f1b28198e8e2fe6","doc/ISO-8859-10.txt":"6d3949ad7c81ca176895101ed81a1db7df1060d64e262880b94bd31bb344ab4d","doc/ISO-8859-13.txt":"3951dd89cf93f7729148091683cf8511f4529388b7dc8dcd0d62eaed55be93fa","doc/ISO-8859-14.txt":"3d330784a0374fd255a38b47949675cc7168c800530534b0a01cac6edc623adc","doc/ISO-8859-15.txt":"24b1084aab5127a85aab99153f86e24694d0a3615f53b5ce23683f97cf66c47a","doc/ISO-8859-16.txt":"ce0272559b92ba76d7a7e476f6424ae4a5cc72e75b183611b08392e44add4d25","doc/ISO-8859-2.txt":"18ceff88c13d1b5ba455a3919b1e3de489045c4c3d2dd7e8527c125c75d54aad","doc/ISO-8859-3.txt":"21798404c68f4f5db59223362f24999da96968c0628427321fccce7d2849a130","doc/ISO-8859-4.txt":"d27f6520c6c5bfbcc19176b71d081cdb3bccde1622bb3e420d5680e812632d53","doc/ISO-8859-5.txt":"a10ec8d6ea7a78ad15da7275f6cb1a3365118527e28f9af6d0d5830501303f3a","doc/ISO-8859-6.txt":"ccda8a2efc96115336bdd77776637b9712425e44fbcf745353b9057fbef144e7","doc/ISO-8859-7.txt":"17900fa1f27a445958f0a77d7d9056be375a6bd7ee4492aa680c7c1500bab85e","doc/ISO-8859-8-I.txt":"8357555646d54265a9b9ffa3e68b08d132312f1561c60108ff9b8b1167b6ecf2","doc/ISO-8859-8.txt":"72cd6f3afb7b4a9c16a66a362473315770b7755d72c86c870e52fc3eba86c8af","doc/KOI8-R.txt":"839cf19a38da994488004ed7814b1f6151640156a9a2af02bf2efca745fb5966","doc/KOI8-U.txt":"0cc76624ed1f024183e2298b7e019957da2c70c8ca06e0fc4e6f353f50a5054f","doc/Shift_JIS.txt":"34c49141818cb9ddbcf59cc858f78a79be8ad148d563f26415108ae1f148443f","doc/UTF-16BE.txt":"e2e280d8acbaa6d2a6b3569d60e17500a285f2baa0df3363dd85537cd5a1ef8f","doc/UTF-16LE.txt":"70bdc170e3fc5298ba68f10125fb5eeb8b077036cc96bb4416c4de396f6d76c1","doc/UTF-8.txt":"ea7bae742e613010ced002cf4b601a737d2203fad65e115611451bc4428f548a","doc/gb18030.txt":"dc71378a8f07a2d8659f69ee81fb8791fef56ba86f124b429978285237bb4a7b","doc/macintosh.txt":"57491e53866711b4672d9b9ff35380b9dac9e0d8e3d6c20bdd6140603687c023","doc/replacement.txt":"4b6c3bbd7999d9d4108a281594bd02d13607e334a95465afff8c2c08d395f0e4","doc/windows-1250.txt":"61296bb6a21cdab602300d32ecfba434cb82de5ac3bc88d58710d2f125e28d39","doc/windows-1251.txt":"7deea1c61dea1485c8ff02db2c7d578db7a9aab63ab1cfd02ec04b515864689e","doc/windows-1252.txt":"933ef3bdddfce5ee132b9f1a1aa8b47423d2587bbe475b19028d0a6d38e180b6","doc/windows-1253.txt":"1a38748b88e99071a5c7b3d5456ead4caedeabab50d50d658be105bc113714de","doc/windows-1254.txt":"f8372f86c6f8d642563cd6ddc025260553292a39423df1683a98670bd7bf2b47","doc/windows-1255.txt":"4e5852494730054e2da258a74e1b9d780abbcdd8ce22ebc218ca2efe9e90493d","doc/windows-1256.txt":"c0879c5172abedead302a406e8f60d9cd9598694a0ffa4fd288ffe4fef7b8ea1","doc/windows-1257.txt":"c28a0c9f964fcb2b46d21f537c402446501a2800670481d6abf9fd9e9018d523","doc/windows-1258.txt":"5019ae4d61805c79aacbf17c93793342dbb098d65a1837783bc3e2c6d6a23602","doc/windows-874.txt":"4ef0e4501c5feba8b17aee1818602ed44b36ca8475db771ce2fc16d392cabecc","doc/x-mac-cyrillic.txt":"58be154d8a888ca3d484b83b44f749823ef339ab27f14d90ca9a856f5050a8bd","doc/x-user-defined.txt":"f9cd07c4321bf5cfb0be4bdddd251072999b04a6cf7a6f5bc63709a84e2c1ffc","generate-encoding-data.py":"be989dd25c6b946e3e8745fdc8e8a80fcf24b3be99ad0b4b78153ba3f6ab6310","rustfmt.toml":"85c1a3b4382fd89e991cbb81b70fb52780472edc064c963943cdaaa56e0a2030","src/ascii.rs":"c44c002641adb5ebc4368707a8cc0a076d2f33e6a5c27b1b69988eb515f5653d","src/big5.rs":"ec6e2913011a38e9a3e825a1731f139a7ca1d5b264fefae51a3cc1a68a57cef9","src/data.rs":"8a617cc57032092d65850eb27e00de687c80aea3299e839a1f58b42d0b35abf3","src/euc_jp.rs":"32047f5b540188c4cb19c07165f846b9786a09f18e315ed3e9bda1293dae52aa","src/euc_kr.rs":"9b25afc72d9378700eecfac58d55ad1c5946d6cd0ccde2c29c08200ef2de6bb9","src/gb18030.rs":"808587168d73f0c80f8520f0ca9b161866ed2efeb17a05e85fdf3b8efe7ba28a","src/handles.rs":"cc83dc0754751d67f5688a65c5e0191cba02f6bacce81a0813a243cba55eef7a","src/iso_2022_jp.rs":"9bb485e82574f4b7d4b2364f0ff276acb6a0bc111758420a3b0ec5e04c196652","src/lib.rs":"1dc07b818e45846b16ddcaf0de46c8862dd7df8099123ec38b95c3f8ad9c91ec","src/macros.rs":"200997f8870de8bfd8cdc475e92115df42108c0df661e49d3d1cbc32056e1d99","src/mem.rs":"0bf34103e0ad1b842a13a082dee2b920b05cf4fb0f145c9ee7f608f4cb4a544f","src/replacement.rs":"7660b34a53f8c1ca2bdfa0e51e843ec28326950952ad8bc96569feb93ac62308","src/shift_jis.rs":"6951ae67e36b1a12fa3a30734957f444d8b1b4ae0e2bde52060b29bd0f16d9d9","src/simd_funcs.rs":"2612aba86e1d201096d7e47a859bc3444f85934cc82d8adc6d39a4304d9eecfc","src/single_byte.rs":"3c9e9c1f946ae622c725ba9421240c1faa9a05e95fa10dd4642a25cb276a1edc","src/test_data/big5_in.txt":"4c5a8691f8dc717311889c63894026d2fb62725a86c4208ca274a9cc8d42a503","src/test_data/big5_in_ref.txt":"99d399e17750cf9c7cf30bb253dbfe35b81c4fcbdead93cfa48b1429213473c7","src/test_data/big5_out.txt":"6193ca97c297aa20e09396038d18e938bb7ea331c26f0f2454097296723a0b13","src/test_data/big5_out_ref.txt":"36567691f557df144f6cc520015a87038dfa156f296fcf103b56ae9a718be1fc","src/test_data/euc_kr_in.txt":"c86a7224f3215fa0d04e685622a752fdc72763e8ae076230c7fd62de57ec4074","src/test_data/euc_kr_in_ref.txt":"1f419f4ca47d708b54c73c461545a022ae2e20498fdbf8005a483d752a204883","src/test_data/euc_kr_out.txt":"e7f32e026f70be1e1b58e0047baf7d3d2c520269c4f9b9992e158b4decb0a1a3","src/test_data/euc_kr_out_ref.txt":"c9907857980b20b8e9e3b584482ed6567a2be6185d72237b6322f0404944924e","src/test_data/gb18030_in.txt":"ab7231b2d3e9afacdbd7d7f3b9e5361a7ff9f7e1cfdb4f3bd905b9362b309e53","src/test_data/gb18030_in_ref.txt":"dc5069421adca2043c55f5012b55a76fdff651d22e6e699fd0978f8d5706815c","src/test_data/gb18030_out.txt":"f0208d527f5ca63de7d9a0323be8d5cf12d8a104b2943d92c2701f0c3364dac1","src/test_data/gb18030_out_ref.txt":"6819fe47627e4ea01027003fc514b9f21a1322e732d7f1fb92cc6c5455bc6c07","src/test_data/iso_2022_jp_in.txt":"cd24bbdcb1834e25db54646fbf4c41560a13dc7540f6be3dba4f5d97d44513af","src/test_data/iso_2022_jp_in_ref.txt":"3dc4e6a5e06471942d086b16c9440945e78415f6f3f47e43717e4bc2eac2cdf5","src/test_data/iso_2022_jp_out.txt":"9b6f015329dda6c3f9ee5ce6dbd6fa9c89acc21283e886836c78b8d833480c21","src/test_data/iso_2022_jp_out_ref.txt":"78cb260093a20116ad9a42f43b05d1848c5ab100b6b9a850749809e943884b35","src/test_data/jis0208_in.txt":"6df3030553ffb0a6615bb33dc8ea9dca6d9623a9028e2ffec754ce3c3da824cc","src/test_data/jis0208_in_ref.txt":"3dc4e6a5e06471942d086b16c9440945e78415f6f3f47e43717e4bc2eac2cdf5","src/test_data/jis0208_out.txt":"4ec24477e1675ce750733bdc3c5add1cd27b6bd4ce1f09289564646e9654e857","src/test_data/jis0208_out_ref.txt":"c3e1cef5032b2b1d93a406f31ff940c4e2dfe8859b8b17ca2761fee7a75a0e48","src/test_data/jis0212_in.txt":"c011f0dd72bd7c8cd922df9374ef8d2769a77190514c77f6c62b415852eeb9fe","src/test_data/jis0212_in_ref.txt":"7d9458b3d2f73e7092a7f505c08ce1d233dde18aa679fbcf9889256239cc9e06","src/test_data/shift_jis_in.txt":"02e389ccef0dd2122e63f503899402cb7f797912c2444cc80ab93131116c5524","src/test_data/shift_jis_in_ref.txt":"512f985950ca902e643c88682dba9708b7c38d3c5ec2925168ab00ac94ab19f9","src/test_data/shift_jis_out.txt":"5fbc44da7bf639bf6cfe0fa1fd3eba7102b88f81919c9ea991302712f69426fb","src/test_data/shift_jis_out_ref.txt":"466322c6fed8286c64582731755290c2296508efdd258826e6279686649b481f","src/test_labels_names.rs":"23a2e11b02b3b8d15fb5613a625e3edb2c61e70e3c581abfd638719a4088200d","src/testing.rs":"f59e671e95a98a56f6b573e8c6be4d71e670bf52f7e20eb1605d990aafa1894e","src/utf_16.rs":"c071a147fad38d750c2c247e141b76b929a48007b99f26b2922b9caecdaf2f25","src/utf_8.rs":"7b7d887b347f1aefa03246b028a36a72758a4ce76c28f3b45c19467851aa7839","src/variant.rs":"1fab5363588a1554a7169de8731ea9cded7ac63ea35caabdd1c27a8dde68c27b","src/x_user_defined.rs":"c9c010730dfb9f141d4fed19350c08a21af240913a54bb64f5ca89ff93b6b7d1"},"package":"7268b386296a025e474d5140678f75d6de9493ae55a5d709eeb9dd08149945e1"} \ No newline at end of file +{"files":{"CONTRIBUTING.md":"ca1901f3e8532fb4cec894fd3664f0eaa898c0c4b961d1b992d1ed54eacf362a","COPYRIGHT":"11789f45bb180841cd362a5eee6789c68ddb573a11105e30768c308a6add0190","Cargo.toml":"22a4d210c92dae9f32c6944ef340ee8fdd027f99c081577e8907123e2a93383e","Ideas.md":"b7452893f500163868d8de52c09addaf91e1632454ed02e892c467ed7ec39dbd","LICENSE-APACHE":"cfc7749b96f63bd31c3c42b5c471bf756814053e847c10f3eb003417bc523d30","LICENSE-MIT":"3fa4ca83dcc9237839b1bdeb2e6d16bdfb5ec0c5ce42b24694d8bbf0dcbef72c","LICENSE-WHATWG":"838118388fe5c2e7f1dbbaeed13e1c7f3ebf88be91319c7c1d77c18e987d1a50","README.md":"1d08aefcb92afa81b18154049c9abbcad4540a23f7172e9f9bbed5af33f1a087","ci/miri.sh":"43cb8d82f49e3bfe2d2274b6ccd6f0714a4188ccef0cecc040829883cfdbee25","doc/Big5.txt":"f73a2edc5cb6c2d140ba6e07f4542e1c4a234950378acde1df93480f0ca0be0b","doc/EUC-JP.txt":"ee2818b907d0137f40a9ab9fd525fc700a44dbdddb6cf0c157a656566bae4bf1","doc/EUC-KR.txt":"71d9e2ccf3b124e8bdfb433c8cf2773fd878077038d0cec3c7237a50f4a78a30","doc/GBK.txt":"c1b522b5a799884e5001da661f42c5a8f4d0acb9ef1d74b206f22b5f65365606","doc/IBM866.txt":"a5a433e804d0f83af785015179fbc1d9b0eaf1f7960efcd04093e136b51fbd0e","doc/ISO-2022-JP.txt":"af86684f5a8f0e2868d7b2c292860140c3d2e5527530ca091f1b28198e8e2fe6","doc/ISO-8859-10.txt":"6d3949ad7c81ca176895101ed81a1db7df1060d64e262880b94bd31bb344ab4d","doc/ISO-8859-13.txt":"3951dd89cf93f7729148091683cf8511f4529388b7dc8dcd0d62eaed55be93fa","doc/ISO-8859-14.txt":"3d330784a0374fd255a38b47949675cc7168c800530534b0a01cac6edc623adc","doc/ISO-8859-15.txt":"24b1084aab5127a85aab99153f86e24694d0a3615f53b5ce23683f97cf66c47a","doc/ISO-8859-16.txt":"ce0272559b92ba76d7a7e476f6424ae4a5cc72e75b183611b08392e44add4d25","doc/ISO-8859-2.txt":"18ceff88c13d1b5ba455a3919b1e3de489045c4c3d2dd7e8527c125c75d54aad","doc/ISO-8859-3.txt":"21798404c68f4f5db59223362f24999da96968c0628427321fccce7d2849a130","doc/ISO-8859-4.txt":"d27f6520c6c5bfbcc19176b71d081cdb3bccde1622bb3e420d5680e812632d53","doc/ISO-8859-5.txt":"a10ec8d6ea7a78ad15da7275f6cb1a3365118527e28f9af6d0d5830501303f3a","doc/ISO-8859-6.txt":"ccda8a2efc96115336bdd77776637b9712425e44fbcf745353b9057fbef144e7","doc/ISO-8859-7.txt":"17900fa1f27a445958f0a77d7d9056be375a6bd7ee4492aa680c7c1500bab85e","doc/ISO-8859-8-I.txt":"8357555646d54265a9b9ffa3e68b08d132312f1561c60108ff9b8b1167b6ecf2","doc/ISO-8859-8.txt":"72cd6f3afb7b4a9c16a66a362473315770b7755d72c86c870e52fc3eba86c8af","doc/KOI8-R.txt":"839cf19a38da994488004ed7814b1f6151640156a9a2af02bf2efca745fb5966","doc/KOI8-U.txt":"0cc76624ed1f024183e2298b7e019957da2c70c8ca06e0fc4e6f353f50a5054f","doc/Shift_JIS.txt":"34c49141818cb9ddbcf59cc858f78a79be8ad148d563f26415108ae1f148443f","doc/UTF-16BE.txt":"e2e280d8acbaa6d2a6b3569d60e17500a285f2baa0df3363dd85537cd5a1ef8f","doc/UTF-16LE.txt":"70bdc170e3fc5298ba68f10125fb5eeb8b077036cc96bb4416c4de396f6d76c1","doc/UTF-8.txt":"ea7bae742e613010ced002cf4b601a737d2203fad65e115611451bc4428f548a","doc/gb18030.txt":"dc71378a8f07a2d8659f69ee81fb8791fef56ba86f124b429978285237bb4a7b","doc/macintosh.txt":"57491e53866711b4672d9b9ff35380b9dac9e0d8e3d6c20bdd6140603687c023","doc/replacement.txt":"4b6c3bbd7999d9d4108a281594bd02d13607e334a95465afff8c2c08d395f0e4","doc/windows-1250.txt":"61296bb6a21cdab602300d32ecfba434cb82de5ac3bc88d58710d2f125e28d39","doc/windows-1251.txt":"7deea1c61dea1485c8ff02db2c7d578db7a9aab63ab1cfd02ec04b515864689e","doc/windows-1252.txt":"933ef3bdddfce5ee132b9f1a1aa8b47423d2587bbe475b19028d0a6d38e180b6","doc/windows-1253.txt":"1a38748b88e99071a5c7b3d5456ead4caedeabab50d50d658be105bc113714de","doc/windows-1254.txt":"f8372f86c6f8d642563cd6ddc025260553292a39423df1683a98670bd7bf2b47","doc/windows-1255.txt":"4e5852494730054e2da258a74e1b9d780abbcdd8ce22ebc218ca2efe9e90493d","doc/windows-1256.txt":"c0879c5172abedead302a406e8f60d9cd9598694a0ffa4fd288ffe4fef7b8ea1","doc/windows-1257.txt":"c28a0c9f964fcb2b46d21f537c402446501a2800670481d6abf9fd9e9018d523","doc/windows-1258.txt":"5019ae4d61805c79aacbf17c93793342dbb098d65a1837783bc3e2c6d6a23602","doc/windows-874.txt":"4ef0e4501c5feba8b17aee1818602ed44b36ca8475db771ce2fc16d392cabecc","doc/x-mac-cyrillic.txt":"58be154d8a888ca3d484b83b44f749823ef339ab27f14d90ca9a856f5050a8bd","doc/x-user-defined.txt":"f9cd07c4321bf5cfb0be4bdddd251072999b04a6cf7a6f5bc63709a84e2c1ffc","generate-encoding-data.py":"be989dd25c6b946e3e8745fdc8e8a80fcf24b3be99ad0b4b78153ba3f6ab6310","rustfmt.toml":"85c1a3b4382fd89e991cbb81b70fb52780472edc064c963943cdaaa56e0a2030","src/ascii.rs":"588e38b01e666d5e7462617ea7e90a108d608dec9e016f3d273ac0744af2e05d","src/big5.rs":"ec6e2913011a38e9a3e825a1731f139a7ca1d5b264fefae51a3cc1a68a57cef9","src/data.rs":"8a617cc57032092d65850eb27e00de687c80aea3299e839a1f58b42d0b35abf3","src/euc_jp.rs":"32047f5b540188c4cb19c07165f846b9786a09f18e315ed3e9bda1293dae52aa","src/euc_kr.rs":"9b25afc72d9378700eecfac58d55ad1c5946d6cd0ccde2c29c08200ef2de6bb9","src/gb18030.rs":"808587168d73f0c80f8520f0ca9b161866ed2efeb17a05e85fdf3b8efe7ba28a","src/handles.rs":"b08cef1f5785bb6a4822f2e844c6df1b046b737b7a075e4593eaa8c4208e9fe2","src/iso_2022_jp.rs":"9bb485e82574f4b7d4b2364f0ff276acb6a0bc111758420a3b0ec5e04c196652","src/lib.rs":"834f44b670ec48ee82c0e12223d1567313fdd9f88bca5f4b117c82c1828f559f","src/macros.rs":"200997f8870de8bfd8cdc475e92115df42108c0df661e49d3d1cbc32056e1d99","src/mem.rs":"948571137d3b151df8db4fb2c733e74ae595d055cdf0ad83abcab9341d6adabe","src/replacement.rs":"7660b34a53f8c1ca2bdfa0e51e843ec28326950952ad8bc96569feb93ac62308","src/shift_jis.rs":"6951ae67e36b1a12fa3a30734957f444d8b1b4ae0e2bde52060b29bd0f16d9d9","src/simd_funcs.rs":"05c6e77af74bfe73cd39a752067c11425d6b46e5da419910f54bf75a5c02a984","src/single_byte.rs":"3ad87116fb339434a4b58e8f2b15485f2b66b9f7814d708f16194ed08f6d6ccf","src/test_data/big5_in.txt":"4c5a8691f8dc717311889c63894026d2fb62725a86c4208ca274a9cc8d42a503","src/test_data/big5_in_ref.txt":"99d399e17750cf9c7cf30bb253dbfe35b81c4fcbdead93cfa48b1429213473c7","src/test_data/big5_out.txt":"6193ca97c297aa20e09396038d18e938bb7ea331c26f0f2454097296723a0b13","src/test_data/big5_out_ref.txt":"36567691f557df144f6cc520015a87038dfa156f296fcf103b56ae9a718be1fc","src/test_data/euc_kr_in.txt":"c86a7224f3215fa0d04e685622a752fdc72763e8ae076230c7fd62de57ec4074","src/test_data/euc_kr_in_ref.txt":"1f419f4ca47d708b54c73c461545a022ae2e20498fdbf8005a483d752a204883","src/test_data/euc_kr_out.txt":"e7f32e026f70be1e1b58e0047baf7d3d2c520269c4f9b9992e158b4decb0a1a3","src/test_data/euc_kr_out_ref.txt":"c9907857980b20b8e9e3b584482ed6567a2be6185d72237b6322f0404944924e","src/test_data/gb18030_in.txt":"ab7231b2d3e9afacdbd7d7f3b9e5361a7ff9f7e1cfdb4f3bd905b9362b309e53","src/test_data/gb18030_in_ref.txt":"dc5069421adca2043c55f5012b55a76fdff651d22e6e699fd0978f8d5706815c","src/test_data/gb18030_out.txt":"f0208d527f5ca63de7d9a0323be8d5cf12d8a104b2943d92c2701f0c3364dac1","src/test_data/gb18030_out_ref.txt":"6819fe47627e4ea01027003fc514b9f21a1322e732d7f1fb92cc6c5455bc6c07","src/test_data/iso_2022_jp_in.txt":"cd24bbdcb1834e25db54646fbf4c41560a13dc7540f6be3dba4f5d97d44513af","src/test_data/iso_2022_jp_in_ref.txt":"3dc4e6a5e06471942d086b16c9440945e78415f6f3f47e43717e4bc2eac2cdf5","src/test_data/iso_2022_jp_out.txt":"9b6f015329dda6c3f9ee5ce6dbd6fa9c89acc21283e886836c78b8d833480c21","src/test_data/iso_2022_jp_out_ref.txt":"78cb260093a20116ad9a42f43b05d1848c5ab100b6b9a850749809e943884b35","src/test_data/jis0208_in.txt":"6df3030553ffb0a6615bb33dc8ea9dca6d9623a9028e2ffec754ce3c3da824cc","src/test_data/jis0208_in_ref.txt":"3dc4e6a5e06471942d086b16c9440945e78415f6f3f47e43717e4bc2eac2cdf5","src/test_data/jis0208_out.txt":"4ec24477e1675ce750733bdc3c5add1cd27b6bd4ce1f09289564646e9654e857","src/test_data/jis0208_out_ref.txt":"c3e1cef5032b2b1d93a406f31ff940c4e2dfe8859b8b17ca2761fee7a75a0e48","src/test_data/jis0212_in.txt":"c011f0dd72bd7c8cd922df9374ef8d2769a77190514c77f6c62b415852eeb9fe","src/test_data/jis0212_in_ref.txt":"7d9458b3d2f73e7092a7f505c08ce1d233dde18aa679fbcf9889256239cc9e06","src/test_data/shift_jis_in.txt":"02e389ccef0dd2122e63f503899402cb7f797912c2444cc80ab93131116c5524","src/test_data/shift_jis_in_ref.txt":"512f985950ca902e643c88682dba9708b7c38d3c5ec2925168ab00ac94ab19f9","src/test_data/shift_jis_out.txt":"5fbc44da7bf639bf6cfe0fa1fd3eba7102b88f81919c9ea991302712f69426fb","src/test_data/shift_jis_out_ref.txt":"466322c6fed8286c64582731755290c2296508efdd258826e6279686649b481f","src/test_labels_names.rs":"23a2e11b02b3b8d15fb5613a625e3edb2c61e70e3c581abfd638719a4088200d","src/testing.rs":"f59e671e95a98a56f6b573e8c6be4d71e670bf52f7e20eb1605d990aafa1894e","src/utf_16.rs":"c071a147fad38d750c2c247e141b76b929a48007b99f26b2922b9caecdaf2f25","src/utf_8.rs":"7b7d887b347f1aefa03246b028a36a72758a4ce76c28f3b45c19467851aa7839","src/variant.rs":"1fab5363588a1554a7169de8731ea9cded7ac63ea35caabdd1c27a8dde68c27b","src/x_user_defined.rs":"9456ca46168ef86c98399a2536f577ef7be3cdde90c0c51392d8ac48519d3fae"},"package":"b45de904aa0b010bce2ab45264d0631681847fa7b6f2eaa7dab7619943bc4f59"}