perl-Crypt-Curve25519/perl-Crypt-Curve25519-0.06-fmul-fixedvar.patch

175 lines
6.1 KiB
Diff
Raw Normal View History

diff -uNr Crypt-Curve25519-0.06.ORIG/curve25519-donna.c Crypt-Curve25519-0.06/curve25519-donna.c
--- Crypt-Curve25519-0.06.ORIG/curve25519-donna.c 2019-06-13 11:19:36.492819752 +0100
+++ Crypt-Curve25519-0.06/curve25519-donna.c 2019-06-13 11:19:55.595991363 +0100
@@ -325,7 +325,7 @@
* reduced coefficient.
*/
static void
-fmul(limb *output, const limb *in, const limb *in2) {
+fixedvar(limb *output, const limb *in, const limb *in2) {
limb t[19];
fproduct(t, in, in2);
freduce_degree(t);
@@ -661,54 +661,54 @@
/* 2 */ fsquare(z2,z);
/* 4 */ fsquare(t1,z2);
/* 8 */ fsquare(t0,t1);
- /* 9 */ fmul(z9,t0,z);
- /* 11 */ fmul(z11,z9,z2);
+ /* 9 */ fixedvar(z9,t0,z);
+ /* 11 */ fixedvar(z11,z9,z2);
/* 22 */ fsquare(t0,z11);
- /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
+ /* 2^5 - 2^0 = 31 */ fixedvar(z2_5_0,t0,z9);
/* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
/* 2^7 - 2^2 */ fsquare(t1,t0);
/* 2^8 - 2^3 */ fsquare(t0,t1);
/* 2^9 - 2^4 */ fsquare(t1,t0);
/* 2^10 - 2^5 */ fsquare(t0,t1);
- /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
+ /* 2^10 - 2^0 */ fixedvar(z2_10_0,t0,z2_5_0);
/* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
/* 2^12 - 2^2 */ fsquare(t1,t0);
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
- /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
+ /* 2^20 - 2^0 */ fixedvar(z2_20_0,t1,z2_10_0);
/* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
/* 2^22 - 2^2 */ fsquare(t1,t0);
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
- /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
+ /* 2^40 - 2^0 */ fixedvar(t0,t1,z2_20_0);
/* 2^41 - 2^1 */ fsquare(t1,t0);
/* 2^42 - 2^2 */ fsquare(t0,t1);
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
- /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
+ /* 2^50 - 2^0 */ fixedvar(z2_50_0,t0,z2_10_0);
/* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
/* 2^52 - 2^2 */ fsquare(t1,t0);
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
- /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
+ /* 2^100 - 2^0 */ fixedvar(z2_100_0,t1,z2_50_0);
/* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
/* 2^102 - 2^2 */ fsquare(t0,t1);
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
- /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
+ /* 2^200 - 2^0 */ fixedvar(t1,t0,z2_100_0);
/* 2^201 - 2^1 */ fsquare(t0,t1);
/* 2^202 - 2^2 */ fsquare(t1,t0);
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
- /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
+ /* 2^250 - 2^0 */ fixedvar(t0,t1,z2_50_0);
/* 2^251 - 2^1 */ fsquare(t1,t0);
/* 2^252 - 2^2 */ fsquare(t0,t1);
/* 2^253 - 2^3 */ fsquare(t1,t0);
/* 2^254 - 2^4 */ fsquare(t0,t1);
/* 2^255 - 2^5 */ fsquare(t1,t0);
- /* 2^255 - 21 */ fmul(out,t1,z11);
+ /* 2^255 - 21 */ fixedvar(out,t1,z11);
}
int curve25519_donna(u8 *, const u8 *, const u8 *);
@@ -727,7 +727,7 @@
fexpand(bp, basepoint);
cmult(x, z, e, bp);
crecip(zmone, z);
- fmul(z, x, zmone);
+ fixedvar(z, x, zmone);
freduce_coefficients(z);
fcontract(mypublic, z);
return 0;
diff -uNr Crypt-Curve25519-0.06.ORIG/curve25519-donna-c64.c Crypt-Curve25519-0.06/curve25519-donna-c64.c
--- Crypt-Curve25519-0.06.ORIG/curve25519-donna-c64.c 2019-06-13 11:19:36.492819752 +0100
+++ Crypt-Curve25519-0.06/curve25519-donna-c64.c 2019-06-13 11:19:55.598991390 +0100
@@ -96,7 +96,7 @@
* On return, output[i] < 2**52
*/
static inline void force_inline
-fmul(felem output, const felem in2, const felem in) {
+fixedvar(felem output, const felem in2, const felem in) {
uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
@@ -305,22 +305,22 @@
memcpy(origxprime, xprime, sizeof(limb) * 5);
fsum(xprime, zprime);
fdifference_backwards(zprime, origxprime);
- fmul(xxprime, xprime, z);
- fmul(zzprime, x, zprime);
+ fixedvar(xxprime, xprime, z);
+ fixedvar(zzprime, x, zprime);
memcpy(origxprime, xxprime, sizeof(limb) * 5);
fsum(xxprime, zzprime);
fdifference_backwards(zzprime, origxprime);
fsquare_times(x3, xxprime, 1);
fsquare_times(zzzprime, zzprime, 1);
- fmul(z3, zzzprime, qmqp);
+ fixedvar(z3, zzzprime, qmqp);
fsquare_times(xx, x, 1);
fsquare_times(zz, z, 1);
- fmul(x2, xx, zz);
+ fixedvar(x2, xx, zz);
fdifference_backwards(zz, xx); // does zz = xx - zz
fscalar_product(zzz, zz, 121665);
fsum(zzz, xx);
- fmul(z2, zz, zzz);
+ fixedvar(z2, zz, zzz);
}
// -----------------------------------------------------------------------------
@@ -405,26 +405,26 @@
/* 2 */ fsquare_times(a, z, 1); // a = 2
/* 8 */ fsquare_times(t0, a, 2);
- /* 9 */ fmul(b, t0, z); // b = 9
- /* 11 */ fmul(a, b, a); // a = 11
+ /* 9 */ fixedvar(b, t0, z); // b = 9
+ /* 11 */ fixedvar(a, b, a); // a = 11
/* 22 */ fsquare_times(t0, a, 1);
- /* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
+ /* 2^5 - 2^0 = 31 */ fixedvar(b, t0, b);
/* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
- /* 2^10 - 2^0 */ fmul(b, t0, b);
+ /* 2^10 - 2^0 */ fixedvar(b, t0, b);
/* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
- /* 2^20 - 2^0 */ fmul(c, t0, b);
+ /* 2^20 - 2^0 */ fixedvar(c, t0, b);
/* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
- /* 2^40 - 2^0 */ fmul(t0, t0, c);
+ /* 2^40 - 2^0 */ fixedvar(t0, t0, c);
/* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
- /* 2^50 - 2^0 */ fmul(b, t0, b);
+ /* 2^50 - 2^0 */ fixedvar(b, t0, b);
/* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
- /* 2^100 - 2^0 */ fmul(c, t0, b);
+ /* 2^100 - 2^0 */ fixedvar(c, t0, b);
/* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
- /* 2^200 - 2^0 */ fmul(t0, t0, c);
+ /* 2^200 - 2^0 */ fixedvar(t0, t0, c);
/* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
- /* 2^250 - 2^0 */ fmul(t0, t0, b);
+ /* 2^250 - 2^0 */ fixedvar(t0, t0, b);
/* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
- /* 2^255 - 21 */ fmul(out, t0, a);
+ /* 2^255 - 21 */ fixedvar(out, t0, a);
}
int curve25519_donna(u8 *, const u8 *, const u8 *);
@@ -443,7 +443,7 @@
fexpand(bp, basepoint);
cmult(x, z, e, bp);
crecip(zmone, z);
- fmul(z, x, zmone);
+ fixedvar(z, x, zmone);
fcontract(mypublic, z);
return 0;
}