ldc/ldc-1.32.2-llvm-16-add_llvm_profdata.patch

3034 lines
122 KiB
Diff
Raw Permalink Normal View History

From 3713607636f887883eb31285ec52eaa7bd26a744 Mon Sep 17 00:00:00 2001
From: Ikey Doherty <ikey@serpentos.com>
Date: Mon, 22 May 2023 12:02:28 +0100
Subject: [PATCH] ldc-profdata: Add llvm-profdata from LLVM release/16.x
Modified to have an explicit `main()` per the other profdata
imports in this tree.
Signed-off-by: Ikey Doherty <ikey@serpentos.com>
---
tools/ldc-profdata/llvm-profdata-16.0.cpp | 3013 +++++++++++++++++++++
1 file changed, 3013 insertions(+)
create mode 100644 tools/ldc-profdata/llvm-profdata-16.0.cpp
diff --git a/tools/ldc-profdata/llvm-profdata-16.0.cpp b/tools/ldc-profdata/llvm-profdata-16.0.cpp
new file mode 100644
index 0000000000..57dfd18076
--- /dev/null
+++ b/tools/ldc-profdata/llvm-profdata-16.0.cpp
@@ -0,0 +1,3013 @@
+//===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// llvm-profdata merges .profdata files.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Object/Binary.h"
+#include "llvm/ProfileData/InstrProfCorrelator.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/ProfileData/InstrProfWriter.h"
+#include "llvm/ProfileData/MemProf.h"
+#include "llvm/ProfileData/ProfileCommon.h"
+#include "llvm/ProfileData/RawMemProfReader.h"
+#include "llvm/ProfileData/SampleProfReader.h"
+#include "llvm/ProfileData/SampleProfWriter.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Discriminator.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/InitLLVM.h"
+#include "llvm/Support/MD5.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Path.h"
+#include "llvm/Support/ThreadPool.h"
+#include "llvm/Support/Threading.h"
+#include "llvm/Support/WithColor.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cmath>
+#include <optional>
+#include <queue>
+
+using namespace llvm;
+
+// We use this string to indicate that there are
+// multiple static functions map to the same name.
+const std::string DuplicateNameStr = "----";
+
+enum ProfileFormat {
+ PF_None = 0,
+ PF_Text,
+ PF_Compact_Binary,
+ PF_Ext_Binary,
+ PF_GCC,
+ PF_Binary
+};
+
+enum class ShowFormat { Text, Json, Yaml };
+
+static void warn(Twine Message, std::string Whence = "",
+ std::string Hint = "") {
+ WithColor::warning();
+ if (!Whence.empty())
+ errs() << Whence << ": ";
+ errs() << Message << "\n";
+ if (!Hint.empty())
+ WithColor::note() << Hint << "\n";
+}
+
+static void warn(Error E, StringRef Whence = "") {
+ if (E.isA<InstrProfError>()) {
+ handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
+ warn(IPE.message(), std::string(Whence), std::string(""));
+ });
+ }
+}
+
+static void exitWithError(Twine Message, std::string Whence = "",
+ std::string Hint = "") {
+ WithColor::error();
+ if (!Whence.empty())
+ errs() << Whence << ": ";
+ errs() << Message << "\n";
+ if (!Hint.empty())
+ WithColor::note() << Hint << "\n";
+ ::exit(1);
+}
+
+static void exitWithError(Error E, StringRef Whence = "") {
+ if (E.isA<InstrProfError>()) {
+ handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
+ instrprof_error instrError = IPE.get();
+ StringRef Hint = "";
+ if (instrError == instrprof_error::unrecognized_format) {
+ // Hint in case user missed specifying the profile type.
+ Hint = "Perhaps you forgot to use the --sample or --memory option?";
+ }
+ exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
+ });
+ return;
+ }
+
+ exitWithError(toString(std::move(E)), std::string(Whence));
+}
+
+static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
+ exitWithError(EC.message(), std::string(Whence));
+}
+
+namespace {
+enum ProfileKinds { instr, sample, memory };
+enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
+}
+
+static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
+ StringRef Whence = "") {
+ if (FailMode == failIfAnyAreInvalid)
+ exitWithErrorCode(EC, Whence);
+ else
+ warn(EC.message(), std::string(Whence));
+}
+
+static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
+ StringRef WhenceFunction = "",
+ bool ShowHint = true) {
+ if (!WhenceFile.empty())
+ errs() << WhenceFile << ": ";
+ if (!WhenceFunction.empty())
+ errs() << WhenceFunction << ": ";
+
+ auto IPE = instrprof_error::success;
+ E = handleErrors(std::move(E),
+ [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
+ IPE = E->get();
+ return Error(std::move(E));
+ });
+ errs() << toString(std::move(E)) << "\n";
+
+ if (ShowHint) {
+ StringRef Hint = "";
+ if (IPE != instrprof_error::success) {
+ switch (IPE) {
+ case instrprof_error::hash_mismatch:
+ case instrprof_error::count_mismatch:
+ case instrprof_error::value_site_count_mismatch:
+ Hint = "Make sure that all profile data to be merged is generated "
+ "from the same binary.";
+ break;
+ default:
+ break;
+ }
+ }
+
+ if (!Hint.empty())
+ errs() << Hint << "\n";
+ }
+}
+
+namespace {
+/// A remapper from original symbol names to new symbol names based on a file
+/// containing a list of mappings from old name to new name.
+class SymbolRemapper {
+ std::unique_ptr<MemoryBuffer> File;
+ DenseMap<StringRef, StringRef> RemappingTable;
+
+public:
+ /// Build a SymbolRemapper from a file containing a list of old/new symbols.
+ static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
+ auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
+ if (!BufOrError)
+ exitWithErrorCode(BufOrError.getError(), InputFile);
+
+ auto Remapper = std::make_unique<SymbolRemapper>();
+ Remapper->File = std::move(BufOrError.get());
+
+ for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
+ !LineIt.is_at_eof(); ++LineIt) {
+ std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
+ if (Parts.first.empty() || Parts.second.empty() ||
+ Parts.second.count(' ')) {
+ exitWithError("unexpected line in remapping file",
+ (InputFile + ":" + Twine(LineIt.line_number())).str(),
+ "expected 'old_symbol new_symbol'");
+ }
+ Remapper->RemappingTable.insert(Parts);
+ }
+ return Remapper;
+ }
+
+ /// Attempt to map the given old symbol into a new symbol.
+ ///
+ /// \return The new symbol, or \p Name if no such symbol was found.
+ StringRef operator()(StringRef Name) {
+ StringRef New = RemappingTable.lookup(Name);
+ return New.empty() ? Name : New;
+ }
+};
+}
+
+struct WeightedFile {
+ std::string Filename;
+ uint64_t Weight;
+};
+typedef SmallVector<WeightedFile, 5> WeightedFileVector;
+
+/// Keep track of merged data and reported errors.
+struct WriterContext {
+ std::mutex Lock;
+ InstrProfWriter Writer;
+ std::vector<std::pair<Error, std::string>> Errors;
+ std::mutex &ErrLock;
+ SmallSet<instrprof_error, 4> &WriterErrorCodes;
+
+ WriterContext(bool IsSparse, std::mutex &ErrLock,
+ SmallSet<instrprof_error, 4> &WriterErrorCodes)
+ : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {
+ }
+};
+
+/// Computer the overlap b/w profile BaseFilename and TestFileName,
+/// and store the program level result to Overlap.
+static void overlapInput(const std::string &BaseFilename,
+ const std::string &TestFilename, WriterContext *WC,
+ OverlapStats &Overlap,
+ const OverlapFuncFilters &FuncFilter,
+ raw_fd_ostream &OS, bool IsCS) {
+ auto ReaderOrErr = InstrProfReader::create(TestFilename);
+ if (Error E = ReaderOrErr.takeError()) {
+ // Skip the empty profiles by returning sliently.
+ instrprof_error IPE = InstrProfError::take(std::move(E));
+ if (IPE != instrprof_error::empty_raw_profile)
+ WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
+ return;
+ }
+
+ auto Reader = std::move(ReaderOrErr.get());
+ for (auto &I : *Reader) {
+ OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
+ FuncOverlap.setFuncInfo(I.Name, I.Hash);
+
+ WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
+ FuncOverlap.dump(OS);
+ }
+}
+
+/// Load an input into a writer context.
+static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
+ const InstrProfCorrelator *Correlator,
+ const StringRef ProfiledBinary, WriterContext *WC) {
+ std::unique_lock<std::mutex> CtxGuard{WC->Lock};
+
+ // Copy the filename, because llvm::ThreadPool copied the input "const
+ // WeightedFile &" by value, making a reference to the filename within it
+ // invalid outside of this packaged task.
+ std::string Filename = Input.Filename;
+
+ using ::llvm::memprof::RawMemProfReader;
+ if (RawMemProfReader::hasFormat(Input.Filename)) {
+ auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary);
+ if (!ReaderOrErr) {
+ exitWithError(ReaderOrErr.takeError(), Input.Filename);
+ }
+ std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get());
+ // Check if the profile types can be merged, e.g. clang frontend profiles
+ // should not be merged with memprof profiles.
+ if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
+ consumeError(std::move(E));
+ WC->Errors.emplace_back(
+ make_error<StringError>(
+ "Cannot merge MemProf profile with Clang generated profile.",
+ std::error_code()),
+ Filename);
+ return;
+ }
+
+ auto MemProfError = [&](Error E) {
+ instrprof_error IPE = InstrProfError::take(std::move(E));
+ WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
+ };
+
+ // Add the frame mappings into the writer context.
+ const auto &IdToFrame = Reader->getFrameMapping();
+ for (const auto &I : IdToFrame) {
+ bool Succeeded = WC->Writer.addMemProfFrame(
+ /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError);
+ // If we weren't able to add the frame mappings then it doesn't make sense
+ // to try to add the records from this profile.
+ if (!Succeeded)
+ return;
+ }
+ const auto &FunctionProfileData = Reader->getProfileData();
+ // Add the memprof records into the writer context.
+ for (const auto &I : FunctionProfileData) {
+ WC->Writer.addMemProfRecord(/*Id=*/I.first, /*Record=*/I.second);
+ }
+ return;
+ }
+
+ auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator);
+ if (Error E = ReaderOrErr.takeError()) {
+ // Skip the empty profiles by returning sliently.
+ instrprof_error IPE = InstrProfError::take(std::move(E));
+ if (IPE != instrprof_error::empty_raw_profile)
+ WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
+ return;
+ }
+
+ auto Reader = std::move(ReaderOrErr.get());
+ if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
+ consumeError(std::move(E));
+ WC->Errors.emplace_back(
+ make_error<StringError>(
+ "Merge IR generated profile with Clang generated profile.",
+ std::error_code()),
+ Filename);
+ return;
+ }
+
+ for (auto &I : *Reader) {
+ if (Remapper)
+ I.Name = (*Remapper)(I.Name);
+ const StringRef FuncName = I.Name;
+ bool Reported = false;
+ WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
+ if (Reported) {
+ consumeError(std::move(E));
+ return;
+ }
+ Reported = true;
+ // Only show hint the first time an error occurs.
+ instrprof_error IPE = InstrProfError::take(std::move(E));
+ std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
+ bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
+ handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
+ FuncName, firstTime);
+ });
+ }
+
+ if (Reader->hasError()) {
+ if (Error E = Reader->getError())
+ WC->Errors.emplace_back(std::move(E), Filename);
+ }
+
+ std::vector<llvm::object::BuildID> BinaryIds;
+ if (Error E = Reader->readBinaryIds(BinaryIds))
+ WC->Errors.emplace_back(std::move(E), Filename);
+ WC->Writer.addBinaryIds(BinaryIds);
+}
+
+/// Merge the \p Src writer context into \p Dst.
+static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
+ for (auto &ErrorPair : Src->Errors)
+ Dst->Errors.push_back(std::move(ErrorPair));
+ Src->Errors.clear();
+
+ if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind()))
+ exitWithError(std::move(E));
+
+ Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
+ instrprof_error IPE = InstrProfError::take(std::move(E));
+ std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
+ bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
+ if (firstTime)
+ warn(toString(make_error<InstrProfError>(IPE)));
+ });
+}
+
+static void writeInstrProfile(StringRef OutputFilename,
+ ProfileFormat OutputFormat,
+ InstrProfWriter &Writer) {
+ std::error_code EC;
+ raw_fd_ostream Output(OutputFilename.data(), EC,
+ OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
+ : sys::fs::OF_None);
+ if (EC)
+ exitWithErrorCode(EC, OutputFilename);
+
+ if (OutputFormat == PF_Text) {
+ if (Error E = Writer.writeText(Output))
+ warn(std::move(E));
+ } else {
+ if (Output.is_displayed())
+ exitWithError("cannot write a non-text format profile to the terminal");
+ if (Error E = Writer.write(Output))
+ warn(std::move(E));
+ }
+}
+
+static void mergeInstrProfile(const WeightedFileVector &Inputs,
+ StringRef DebugInfoFilename,
+ SymbolRemapper *Remapper,
+ StringRef OutputFilename,
+ ProfileFormat OutputFormat, bool OutputSparse,
+ unsigned NumThreads, FailureMode FailMode,
+ const StringRef ProfiledBinary) {
+ if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
+ OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
+ exitWithError("unknown format is specified");
+
+ std::unique_ptr<InstrProfCorrelator> Correlator;
+ if (!DebugInfoFilename.empty()) {
+ if (auto Err =
+ InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator))
+ exitWithError(std::move(Err), DebugInfoFilename);
+ if (auto Err = Correlator->correlateProfileData())
+ exitWithError(std::move(Err), DebugInfoFilename);
+ }
+
+ std::mutex ErrorLock;
+ SmallSet<instrprof_error, 4> WriterErrorCodes;
+
+ // If NumThreads is not specified, auto-detect a good default.
+ if (NumThreads == 0)
+ NumThreads = std::min(hardware_concurrency().compute_thread_count(),
+ unsigned((Inputs.size() + 1) / 2));
+
+ // Initialize the writer contexts.
+ SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
+ for (unsigned I = 0; I < NumThreads; ++I)
+ Contexts.emplace_back(std::make_unique<WriterContext>(
+ OutputSparse, ErrorLock, WriterErrorCodes));
+
+ if (NumThreads == 1) {
+ for (const auto &Input : Inputs)
+ loadInput(Input, Remapper, Correlator.get(), ProfiledBinary,
+ Contexts[0].get());
+ } else {
+ ThreadPool Pool(hardware_concurrency(NumThreads));
+
+ // Load the inputs in parallel (N/NumThreads serial steps).
+ unsigned Ctx = 0;
+ for (const auto &Input : Inputs) {
+ Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary,
+ Contexts[Ctx].get());
+ Ctx = (Ctx + 1) % NumThreads;
+ }
+ Pool.wait();
+
+ // Merge the writer contexts together (~ lg(NumThreads) serial steps).
+ unsigned Mid = Contexts.size() / 2;
+ unsigned End = Contexts.size();
+ assert(Mid > 0 && "Expected more than one context");
+ do {
+ for (unsigned I = 0; I < Mid; ++I)
+ Pool.async(mergeWriterContexts, Contexts[I].get(),
+ Contexts[I + Mid].get());
+ Pool.wait();
+ if (End & 1) {
+ Pool.async(mergeWriterContexts, Contexts[0].get(),
+ Contexts[End - 1].get());
+ Pool.wait();
+ }
+ End = Mid;
+ Mid /= 2;
+ } while (Mid > 0);
+ }
+
+ // Handle deferred errors encountered during merging. If the number of errors
+ // is equal to the number of inputs the merge failed.
+ unsigned NumErrors = 0;
+ for (std::unique_ptr<WriterContext> &WC : Contexts) {
+ for (auto &ErrorPair : WC->Errors) {
+ ++NumErrors;
+ warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
+ }
+ }
+ if (NumErrors == Inputs.size() ||
+ (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
+ exitWithError("no profile can be merged");
+
+ writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
+}
+
+/// The profile entry for a function in instrumentation profile.
+struct InstrProfileEntry {
+ uint64_t MaxCount = 0;
+ uint64_t NumEdgeCounters = 0;
+ float ZeroCounterRatio = 0.0;
+ InstrProfRecord *ProfRecord;
+ InstrProfileEntry(InstrProfRecord *Record);
+ InstrProfileEntry() = default;
+};
+
+InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
+ ProfRecord = Record;
+ uint64_t CntNum = Record->Counts.size();
+ uint64_t ZeroCntNum = 0;
+ for (size_t I = 0; I < CntNum; ++I) {
+ MaxCount = std::max(MaxCount, Record->Counts[I]);
+ ZeroCntNum += !Record->Counts[I];
+ }
+ ZeroCounterRatio = (float)ZeroCntNum / CntNum;
+ NumEdgeCounters = CntNum;
+}
+
+/// Either set all the counters in the instr profile entry \p IFE to
+/// -1 / -2 /in order to drop the profile or scale up the
+/// counters in \p IFP to be above hot / cold threshold. We use
+/// the ratio of zero counters in the profile of a function to
+/// decide the profile is helpful or harmful for performance,
+/// and to choose whether to scale up or drop it.
+static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot,
+ uint64_t HotInstrThreshold,
+ uint64_t ColdInstrThreshold,
+ float ZeroCounterThreshold) {
+ InstrProfRecord *ProfRecord = IFE.ProfRecord;
+ if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
+ // If all or most of the counters of the function are zero, the
+ // profile is unaccountable and should be dropped. Reset all the
+ // counters to be -1 / -2 and PGO profile-use will drop the profile.
+ // All counters being -1 also implies that the function is hot so
+ // PGO profile-use will also set the entry count metadata to be
+ // above hot threshold.
+ // All counters being -2 implies that the function is warm so
+ // PGO profile-use will also set the entry count metadata to be
+ // above cold threshold.
+ auto Kind =
+ (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm);
+ ProfRecord->setPseudoCount(Kind);
+ return;
+ }
+
+ // Scale up the MaxCount to be multiple times above hot / cold threshold.
+ const unsigned MultiplyFactor = 3;
+ uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold);
+ uint64_t Numerator = Threshold * MultiplyFactor;
+
+ // Make sure Threshold for warm counters is below the HotInstrThreshold.
+ if (!SetToHot && Threshold >= HotInstrThreshold) {
+ Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2;
+ }
+
+ uint64_t Denominator = IFE.MaxCount;
+ if (Numerator <= Denominator)
+ return;
+ ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
+ warn(toString(make_error<InstrProfError>(E)));
+ });
+}
+
+const uint64_t ColdPercentileIdx = 15;
+const uint64_t HotPercentileIdx = 11;
+
+using sampleprof::FSDiscriminatorPass;
+
+// Internal options to set FSDiscriminatorPass. Used in merge and show
+// commands.
+static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
+ "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
+ cl::desc("Zero out the discriminator bits for the FS discrimiantor "
+ "pass beyond this value. The enum values are defined in "
+ "Support/Discriminator.h"),
+ cl::values(clEnumVal(Base, "Use base discriminators only"),
+ clEnumVal(Pass1, "Use base and pass 1 discriminators"),
+ clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
+ clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
+ clEnumVal(PassLast, "Use all discriminator bits (default)")));
+
+static unsigned getDiscriminatorMask() {
+ return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
+}
+
+/// Adjust the instr profile in \p WC based on the sample profile in
+/// \p Reader.
+static void
+adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
+ std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
+ unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
+ unsigned InstrProfColdThreshold) {
+ // Function to its entry in instr profile.
+ StringMap<InstrProfileEntry> InstrProfileMap;
+ StringMap<StringRef> StaticFuncMap;
+ InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
+
+ auto checkSampleProfileHasFUnique = [&Reader]() {
+ for (const auto &PD : Reader->getProfiles()) {
+ auto &FContext = PD.first;
+ if (FContext.toString().find(FunctionSamples::UniqSuffix) !=
+ std::string::npos) {
+ return true;
+ }
+ }
+ return false;
+ };
+
+ bool SampleProfileHasFUnique = checkSampleProfileHasFUnique();
+
+ auto buildStaticFuncMap = [&StaticFuncMap,
+ SampleProfileHasFUnique](const StringRef Name) {
+ std::string Prefixes[] = {".cpp:", "cc:", ".c:", ".hpp:", ".h:"};
+ size_t PrefixPos = StringRef::npos;
+ for (auto &Prefix : Prefixes) {
+ PrefixPos = Name.find_insensitive(Prefix);
+ if (PrefixPos == StringRef::npos)
+ continue;
+ PrefixPos += Prefix.size();
+ break;
+ }
+
+ if (PrefixPos == StringRef::npos) {
+ return;
+ }
+
+ StringRef NewName = Name.drop_front(PrefixPos);
+ StringRef FName = Name.substr(0, PrefixPos - 1);
+ if (NewName.size() == 0) {
+ return;
+ }
+
+ // This name should have a static linkage.
+ size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix);
+ bool ProfileHasFUnique = (PostfixPos != StringRef::npos);
+
+ // If sample profile and instrumented profile do not agree on symbol
+ // uniqification.
+ if (SampleProfileHasFUnique != ProfileHasFUnique) {
+ // If instrumented profile uses -funique-internal-linakge-symbols,
+ // we need to trim the name.
+ if (ProfileHasFUnique) {
+ NewName = NewName.substr(0, PostfixPos);
+ } else {
+ // If sample profile uses -funique-internal-linakge-symbols,
+ // we build the map.
+ std::string NStr =
+ NewName.str() + getUniqueInternalLinkagePostfix(FName);
+ NewName = StringRef(NStr);
+ StaticFuncMap[NewName] = Name;
+ return;
+ }
+ }
+
+ if (StaticFuncMap.find(NewName) == StaticFuncMap.end()) {
+ StaticFuncMap[NewName] = Name;
+ } else {
+ StaticFuncMap[NewName] = DuplicateNameStr;
+ }
+ };
+
+ // We need to flatten the SampleFDO profile as the InstrFDO
+ // profile does not have inlined callsite profiles.
+ // One caveat is the pre-inlined function -- their samples
+ // should be collapsed into the caller function.
+ // Here we do a DFS traversal to get the flatten profile
+ // info: the sum of entrycount and the max of maxcount.
+ // Here is the algorithm:
+ // recursive (FS, root_name) {
+ // name = FS->getName();
+ // get samples for FS;
+ // if (InstrProf.find(name) {
+ // root_name = name;
+ // } else {
+ // if (name is in static_func map) {
+ // root_name = static_name;
+ // }
+ // }
+ // update the Map entry for root_name;
+ // for (subfs: FS) {
+ // recursive(subfs, root_name);
+ // }
+ // }
+ //
+ // Here is an example.
+ //
+ // SampleProfile:
+ // foo:12345:1000
+ // 1: 1000
+ // 2.1: 1000
+ // 15: 5000
+ // 4: bar:1000
+ // 1: 1000
+ // 2: goo:3000
+ // 1: 3000
+ // 8: bar:40000
+ // 1: 10000
+ // 2: goo:30000
+ // 1: 30000
+ //
+ // InstrProfile has two entries:
+ // foo
+ // bar.cc:bar
+ //
+ // After BuildMaxSampleMap, we should have the following in FlattenSampleMap:
+ // {"foo", {1000, 5000}}
+ // {"bar.cc:bar", {11000, 30000}}
+ //
+ // foo's has an entry count of 1000, and max body count of 5000.
+ // bar.cc:bar has an entry count of 11000 (sum two callsites of 1000 and
+ // 10000), and max count of 30000 (from the callsite in line 8).
+ //
+ // Note that goo's count will remain in bar.cc:bar() as it does not have an
+ // entry in InstrProfile.
+ DenseMap<StringRef, std::pair<uint64_t, uint64_t>> FlattenSampleMap;
+ auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap,
+ &InstrProfileMap](const FunctionSamples &FS,
+ const StringRef &RootName) {
+ auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS,
+ const StringRef &RootName,
+ auto &BuildImpl) -> void {
+ const StringRef &Name = FS.getName();
+ const StringRef *NewRootName = &RootName;
+ uint64_t EntrySample = FS.getHeadSamplesEstimate();
+ uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true);
+
+ auto It = InstrProfileMap.find(Name);
+ if (It != InstrProfileMap.end()) {
+ NewRootName = &Name;
+ } else {
+ auto NewName = StaticFuncMap.find(Name);
+ if (NewName != StaticFuncMap.end()) {
+ It = InstrProfileMap.find(NewName->second.str());
+ if (NewName->second != DuplicateNameStr) {
+ NewRootName = &NewName->second;
+ }
+ } else {
+ // Here the EntrySample is of an inlined function, so we should not
+ // update the EntrySample in the map.
+ EntrySample = 0;
+ }
+ }
+ EntrySample += FlattenSampleMap[*NewRootName].first;
+ MaxBodySample =
+ std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample);
+ FlattenSampleMap[*NewRootName] =
+ std::make_pair(EntrySample, MaxBodySample);
+
+ for (const auto &C : FS.getCallsiteSamples())
+ for (const auto &F : C.second)
+ BuildImpl(F.second, *NewRootName, BuildImpl);
+ };
+ BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl);
+ };
+
+ for (auto &PD : WC->Writer.getProfileData()) {
+ // Populate IPBuilder.
+ for (const auto &PDV : PD.getValue()) {
+ InstrProfRecord Record = PDV.second;
+ IPBuilder.addRecord(Record);
+ }
+
+ // If a function has multiple entries in instr profile, skip it.
+ if (PD.getValue().size() != 1)
+ continue;
+
+ // Initialize InstrProfileMap.
+ InstrProfRecord *R = &PD.getValue().begin()->second;
+ StringRef FullName = PD.getKey();
+ InstrProfileMap[FullName] = InstrProfileEntry(R);
+ buildStaticFuncMap(FullName);
+ }
+
+ for (auto &PD : Reader->getProfiles()) {
+ sampleprof::FunctionSamples &FS = PD.second;
+ BuildMaxSampleMap(FS, FS.getName());
+ }
+
+ ProfileSummary InstrPS = *IPBuilder.getSummary();
+ ProfileSummary SamplePS = Reader->getSummary();
+
+ // Compute cold thresholds for instr profile and sample profile.
+ uint64_t HotSampleThreshold =
+ ProfileSummaryBuilder::getEntryForPercentile(
+ SamplePS.getDetailedSummary(),
+ ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
+ .MinCount;
+ uint64_t ColdSampleThreshold =
+ ProfileSummaryBuilder::getEntryForPercentile(
+ SamplePS.getDetailedSummary(),
+ ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
+ .MinCount;
+ uint64_t HotInstrThreshold =
+ ProfileSummaryBuilder::getEntryForPercentile(
+ InstrPS.getDetailedSummary(),
+ ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
+ .MinCount;
+ uint64_t ColdInstrThreshold =
+ InstrProfColdThreshold
+ ? InstrProfColdThreshold
+ : ProfileSummaryBuilder::getEntryForPercentile(
+ InstrPS.getDetailedSummary(),
+ ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
+ .MinCount;
+
+ // Find hot/warm functions in sample profile which is cold in instr profile
+ // and adjust the profiles of those functions in the instr profile.
+ for (const auto &E : FlattenSampleMap) {
+ uint64_t SampleMaxCount = std::max(E.second.first, E.second.second);
+ if (SampleMaxCount < ColdSampleThreshold)
+ continue;
+ const StringRef &Name = E.first;
+ auto It = InstrProfileMap.find(Name);
+ if (It == InstrProfileMap.end()) {
+ auto NewName = StaticFuncMap.find(Name);
+ if (NewName != StaticFuncMap.end()) {
+ It = InstrProfileMap.find(NewName->second.str());
+ if (NewName->second == DuplicateNameStr) {
+ WithColor::warning()
+ << "Static function " << Name
+ << " has multiple promoted names, cannot adjust profile.\n";
+ }
+ }
+ }
+ if (It == InstrProfileMap.end() ||
+ It->second.MaxCount > ColdInstrThreshold ||
+ It->second.NumEdgeCounters < SupplMinSizeThreshold)
+ continue;
+ bool SetToHot = SampleMaxCount >= HotSampleThreshold;
+ updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold,
+ ColdInstrThreshold, ZeroCounterThreshold);
+ }
+}
+
+/// The main function to supplement instr profile with sample profile.
+/// \Inputs contains the instr profile. \p SampleFilename specifies the
+/// sample profile. \p OutputFilename specifies the output profile name.
+/// \p OutputFormat specifies the output profile format. \p OutputSparse
+/// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
+/// specifies the minimal size for the functions whose profile will be
+/// adjusted. \p ZeroCounterThreshold is the threshold to check whether
+/// a function contains too many zero counters and whether its profile
+/// should be dropped. \p InstrProfColdThreshold is the user specified
+/// cold threshold which will override the cold threshold got from the
+/// instr profile summary.
+static void supplementInstrProfile(
+ const WeightedFileVector &Inputs, StringRef SampleFilename,
+ StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
+ unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
+ unsigned InstrProfColdThreshold) {
+ if (OutputFilename.compare("-") == 0)
+ exitWithError("cannot write indexed profdata format to stdout");
+ if (Inputs.size() != 1)
+ exitWithError("expect one input to be an instr profile");
+ if (Inputs[0].Weight != 1)
+ exitWithError("expect instr profile doesn't have weight");
+
+ StringRef InstrFilename = Inputs[0].Filename;
+
+ // Read sample profile.
+ LLVMContext Context;
+ auto ReaderOrErr = sampleprof::SampleProfileReader::create(
+ SampleFilename.str(), Context, FSDiscriminatorPassOption);
+ if (std::error_code EC = ReaderOrErr.getError())
+ exitWithErrorCode(EC, SampleFilename);
+ auto Reader = std::move(ReaderOrErr.get());
+ if (std::error_code EC = Reader->read())
+ exitWithErrorCode(EC, SampleFilename);
+
+ // Read instr profile.
+ std::mutex ErrorLock;
+ SmallSet<instrprof_error, 4> WriterErrorCodes;
+ auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
+ WriterErrorCodes);
+ loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get());
+ if (WC->Errors.size() > 0)
+ exitWithError(std::move(WC->Errors[0].first), InstrFilename);
+
+ adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
+ InstrProfColdThreshold);
+ writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
+}
+
+/// Make a copy of the given function samples with all symbol names remapped
+/// by the provided symbol remapper.
+static sampleprof::FunctionSamples
+remapSamples(const sampleprof::FunctionSamples &Samples,
+ SymbolRemapper &Remapper, sampleprof_error &Error) {
+ sampleprof::FunctionSamples Result;
+ Result.setName(Remapper(Samples.getName()));
+ Result.addTotalSamples(Samples.getTotalSamples());
+ Result.addHeadSamples(Samples.getHeadSamples());
+ for (const auto &BodySample : Samples.getBodySamples()) {
+ uint32_t MaskedDiscriminator =
+ BodySample.first.Discriminator & getDiscriminatorMask();
+ Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
+ BodySample.second.getSamples());
+ for (const auto &Target : BodySample.second.getCallTargets()) {
+ Result.addCalledTargetSamples(BodySample.first.LineOffset,
+ MaskedDiscriminator,
+ Remapper(Target.first()), Target.second);
+ }
+ }
+ for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
+ sampleprof::FunctionSamplesMap &Target =
+ Result.functionSamplesAt(CallsiteSamples.first);
+ for (const auto &Callsite : CallsiteSamples.second) {
+ sampleprof::FunctionSamples Remapped =
+ remapSamples(Callsite.second, Remapper, Error);
+ MergeResult(Error,
+ Target[std::string(Remapped.getName())].merge(Remapped));
+ }
+ }
+ return Result;
+}
+
+static sampleprof::SampleProfileFormat FormatMap[] = {
+ sampleprof::SPF_None,
+ sampleprof::SPF_Text,
+ sampleprof::SPF_Compact_Binary,
+ sampleprof::SPF_Ext_Binary,
+ sampleprof::SPF_GCC,
+ sampleprof::SPF_Binary};
+
+static std::unique_ptr<MemoryBuffer>
+getInputFileBuf(const StringRef &InputFile) {
+ if (InputFile == "")
+ return {};
+
+ auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
+ if (!BufOrError)
+ exitWithErrorCode(BufOrError.getError(), InputFile);
+
+ return std::move(*BufOrError);
+}
+
+static void populateProfileSymbolList(MemoryBuffer *Buffer,
+ sampleprof::ProfileSymbolList &PSL) {
+ if (!Buffer)
+ return;
+
+ SmallVector<StringRef, 32> SymbolVec;
+ StringRef Data = Buffer->getBuffer();
+ Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
+
+ for (StringRef SymbolStr : SymbolVec)
+ PSL.add(SymbolStr.trim());
+}
+
+static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
+ ProfileFormat OutputFormat,
+ MemoryBuffer *Buffer,
+ sampleprof::ProfileSymbolList &WriterList,
+ bool CompressAllSections, bool UseMD5,
+ bool GenPartialProfile) {
+ populateProfileSymbolList(Buffer, WriterList);
+ if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
+ warn("Profile Symbol list is not empty but the output format is not "
+ "ExtBinary format. The list will be lost in the output. ");
+
+ Writer.setProfileSymbolList(&WriterList);
+
+ if (CompressAllSections) {
+ if (OutputFormat != PF_Ext_Binary)
+ warn("-compress-all-section is ignored. Specify -extbinary to enable it");
+ else
+ Writer.setToCompressAllSections();
+ }
+ if (UseMD5) {
+ if (OutputFormat != PF_Ext_Binary)
+ warn("-use-md5 is ignored. Specify -extbinary to enable it");
+ else
+ Writer.setUseMD5();
+ }
+ if (GenPartialProfile) {
+ if (OutputFormat != PF_Ext_Binary)
+ warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
+ else
+ Writer.setPartialProfile();
+ }
+}
+
+static void
+mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
+ StringRef OutputFilename, ProfileFormat OutputFormat,
+ StringRef ProfileSymbolListFile, bool CompressAllSections,
+ bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile,
+ bool SampleMergeColdContext, bool SampleTrimColdContext,
+ bool SampleColdContextFrameDepth, FailureMode FailMode,
+ bool DropProfileSymbolList) {
+ using namespace sampleprof;
+ SampleProfileMap ProfileMap;
+ SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
+ LLVMContext Context;
+ sampleprof::ProfileSymbolList WriterList;
+ std::optional<bool> ProfileIsProbeBased;
+ std::optional<bool> ProfileIsCS;
+ for (const auto &Input : Inputs) {
+ auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
+ FSDiscriminatorPassOption);
+ if (std::error_code EC = ReaderOrErr.getError()) {
+ warnOrExitGivenError(FailMode, EC, Input.Filename);
+ continue;
+ }
+
+ // We need to keep the readers around until after all the files are
+ // read so that we do not lose the function names stored in each
+ // reader's memory. The function names are needed to write out the
+ // merged profile map.
+ Readers.push_back(std::move(ReaderOrErr.get()));
+ const auto Reader = Readers.back().get();
+ if (std::error_code EC = Reader->read()) {
+ warnOrExitGivenError(FailMode, EC, Input.Filename);
+ Readers.pop_back();
+ continue;
+ }
+
+ SampleProfileMap &Profiles = Reader->getProfiles();
+ if (ProfileIsProbeBased &&
+ ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
+ exitWithError(
+ "cannot merge probe-based profile with non-probe-based profile");
+ ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
+ if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS)
+ exitWithError("cannot merge CS profile with non-CS profile");
+ ProfileIsCS = FunctionSamples::ProfileIsCS;
+ for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
+ I != E; ++I) {
+ sampleprof_error Result = sampleprof_error::success;
+ FunctionSamples Remapped =
+ Remapper ? remapSamples(I->second, *Remapper, Result)
+ : FunctionSamples();
+ FunctionSamples &Samples = Remapper ? Remapped : I->second;
+ SampleContext FContext = Samples.getContext();
+ MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight));
+ if (Result != sampleprof_error::success) {
+ std::error_code EC = make_error_code(Result);
+ handleMergeWriterError(errorCodeToError(EC), Input.Filename,
+ FContext.toString());
+ }
+ }
+
+ if (!DropProfileSymbolList) {
+ std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
+ Reader->getProfileSymbolList();
+ if (ReaderList)
+ WriterList.merge(*ReaderList);
+ }
+ }
+
+ if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
+ // Use threshold calculated from profile summary unless specified.
+ SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
+ auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
+ uint64_t SampleProfColdThreshold =
+ ProfileSummaryBuilder::getColdCountThreshold(
+ (Summary->getDetailedSummary()));
+
+ // Trim and merge cold context profile using cold threshold above;
+ SampleContextTrimmer(ProfileMap)
+ .trimAndMergeColdContextProfiles(
+ SampleProfColdThreshold, SampleTrimColdContext,
+ SampleMergeColdContext, SampleColdContextFrameDepth, false);
+ }
+
+ if (ProfileIsCS && GenCSNestedProfile) {
+ CSProfileConverter CSConverter(ProfileMap);
+ CSConverter.convertProfiles();
+ ProfileIsCS = FunctionSamples::ProfileIsCS = false;
+ }
+
+ auto WriterOrErr =
+ SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
+ if (std::error_code EC = WriterOrErr.getError())
+ exitWithErrorCode(EC, OutputFilename);
+
+ auto Writer = std::move(WriterOrErr.get());
+ // WriterList will have StringRef refering to string in Buffer.
+ // Make sure Buffer lives as long as WriterList.
+ auto Buffer = getInputFileBuf(ProfileSymbolListFile);
+ handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
+ CompressAllSections, UseMD5, GenPartialProfile);
+ if (std::error_code EC = Writer->write(ProfileMap))
+ exitWithErrorCode(std::move(EC));
+}
+
+static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
+ StringRef WeightStr, FileName;
+ std::tie(WeightStr, FileName) = WeightedFilename.split(',');
+
+ uint64_t Weight;
+ if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
+ exitWithError("input weight must be a positive integer");
+
+ return {std::string(FileName), Weight};
+}
+
+static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
+ StringRef Filename = WF.Filename;
+ uint64_t Weight = WF.Weight;
+
+ // If it's STDIN just pass it on.
+ if (Filename == "-") {
+ WNI.push_back({std::string(Filename), Weight});
+ return;
+ }
+
+ llvm::sys::fs::file_status Status;
+ llvm::sys::fs::status(Filename, Status);
+ if (!llvm::sys::fs::exists(Status))
+ exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
+ Filename);
+ // If it's a source file, collect it.
+ if (llvm::sys::fs::is_regular_file(Status)) {
+ WNI.push_back({std::string(Filename), Weight});
+ return;
+ }
+
+ if (llvm::sys::fs::is_directory(Status)) {
+ std::error_code EC;
+ for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
+ F != E && !EC; F.increment(EC)) {
+ if (llvm::sys::fs::is_regular_file(F->path())) {
+ addWeightedInput(WNI, {F->path(), Weight});
+ }
+ }
+ if (EC)
+ exitWithErrorCode(EC, Filename);
+ }
+}
+
+static void parseInputFilenamesFile(MemoryBuffer *Buffer,
+ WeightedFileVector &WFV) {
+ if (!Buffer)
+ return;
+
+ SmallVector<StringRef, 8> Entries;
+ StringRef Data = Buffer->getBuffer();
+ Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
+ for (const StringRef &FileWeightEntry : Entries) {
+ StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
+ // Skip comments.
+ if (SanitizedEntry.startswith("#"))
+ continue;
+ // If there's no comma, it's an unweighted profile.
+ else if (!SanitizedEntry.contains(','))
+ addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
+ else
+ addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
+ }
+}
+
+static int merge_main(int argc, const char *argv[]) {
+ cl::list<std::string> InputFilenames(cl::Positional,
+ cl::desc("<filename...>"));
+ cl::list<std::string> WeightedInputFilenames("weighted-input",
+ cl::desc("<weight>,<filename>"));
+ cl::opt<std::string> InputFilenamesFile(
+ "input-files", cl::init(""),
+ cl::desc("Path to file containing newline-separated "
+ "[<weight>,]<filename> entries"));
+ cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
+ cl::aliasopt(InputFilenamesFile));
+ cl::opt<bool> DumpInputFileList(
+ "dump-input-file-list", cl::init(false), cl::Hidden,
+ cl::desc("Dump the list of input files and their weights, then exit"));
+ cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
+ cl::desc("Symbol remapping file"));
+ cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
+ cl::aliasopt(RemappingFile));
+ cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
+ cl::init("-"), cl::desc("Output file"));
+ cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
+ cl::aliasopt(OutputFilename));
+ cl::opt<ProfileKinds> ProfileKind(
+ cl::desc("Profile kind:"), cl::init(instr),
+ cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
+ clEnumVal(sample, "Sample profile")));
+ cl::opt<ProfileFormat> OutputFormat(
+ cl::desc("Format of output profile"), cl::init(PF_Binary),
+ cl::values(
+ clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
+ clEnumValN(PF_Compact_Binary, "compbinary",
+ "Compact binary encoding"),
+ clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
+ clEnumValN(PF_Text, "text", "Text encoding"),
+ clEnumValN(PF_GCC, "gcc",
+ "GCC encoding (only meaningful for -sample)")));
+ cl::opt<FailureMode> FailureMode(
+ "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
+ cl::values(clEnumValN(failIfAnyAreInvalid, "any",
+ "Fail if any profile is invalid."),
+ clEnumValN(failIfAllAreInvalid, "all",
+ "Fail only if all profiles are invalid.")));
+ cl::opt<bool> OutputSparse("sparse", cl::init(false),
+ cl::desc("Generate a sparse profile (only meaningful for -instr)"));
+ cl::opt<unsigned> NumThreads(
+ "num-threads", cl::init(0),
+ cl::desc("Number of merge threads to use (default: autodetect)"));
+ cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
+ cl::aliasopt(NumThreads));
+ cl::opt<std::string> ProfileSymbolListFile(
+ "prof-sym-list", cl::init(""),
+ cl::desc("Path to file containing the list of function symbols "
+ "used to populate profile symbol list"));
+ cl::opt<bool> CompressAllSections(
+ "compress-all-sections", cl::init(false), cl::Hidden,
+ cl::desc("Compress all sections when writing the profile (only "
+ "meaningful for -extbinary)"));
+ cl::opt<bool> UseMD5(
+ "use-md5", cl::init(false), cl::Hidden,
+ cl::desc("Choose to use MD5 to represent string in name table (only "
+ "meaningful for -extbinary)"));
+ cl::opt<bool> SampleMergeColdContext(
+ "sample-merge-cold-context", cl::init(false), cl::Hidden,
+ cl::desc(
+ "Merge context sample profiles whose count is below cold threshold"));
+ cl::opt<bool> SampleTrimColdContext(
+ "sample-trim-cold-context", cl::init(false), cl::Hidden,
+ cl::desc(
+ "Trim context sample profiles whose count is below cold threshold"));
+ cl::opt<uint32_t> SampleColdContextFrameDepth(
+ "sample-frame-depth-for-cold-context", cl::init(1),
+ cl::desc("Keep the last K frames while merging cold profile. 1 means the "
+ "context-less base profile"));
+ cl::opt<bool> GenPartialProfile(
+ "gen-partial-profile", cl::init(false), cl::Hidden,
+ cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
+ cl::opt<std::string> SupplInstrWithSample(
+ "supplement-instr-with-sample", cl::init(""), cl::Hidden,
+ cl::desc("Supplement an instr profile with sample profile, to correct "
+ "the profile unrepresentativeness issue. The sample "
+ "profile is the input of the flag. Output will be in instr "
+ "format (The flag only works with -instr)"));
+ cl::opt<float> ZeroCounterThreshold(
+ "zero-counter-threshold", cl::init(0.7), cl::Hidden,
+ cl::desc("For the function which is cold in instr profile but hot in "
+ "sample profile, if the ratio of the number of zero counters "
+ "divided by the total number of counters is above the "
+ "threshold, the profile of the function will be regarded as "
+ "being harmful for performance and will be dropped."));
+ cl::opt<unsigned> SupplMinSizeThreshold(
+ "suppl-min-size-threshold", cl::init(10), cl::Hidden,
+ cl::desc("If the size of a function is smaller than the threshold, "
+ "assume it can be inlined by PGO early inliner and it won't "
+ "be adjusted based on sample profile."));
+ cl::opt<unsigned> InstrProfColdThreshold(
+ "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
+ cl::desc("User specified cold threshold for instr profile which will "
+ "override the cold threshold got from profile summary. "));
+ cl::opt<bool> GenCSNestedProfile(
+ "gen-cs-nested-profile", cl::Hidden, cl::init(false),
+ cl::desc("Generate nested function profiles for CSSPGO"));
+ cl::opt<std::string> DebugInfoFilename(
+ "debug-info", cl::init(""),
+ cl::desc("Use the provided debug info to correlate the raw profile."));
+ cl::opt<std::string> ProfiledBinary(
+ "profiled-binary", cl::init(""),
+ cl::desc("Path to binary from which the profile was collected."));
+ cl::opt<bool> DropProfileSymbolList(
+ "drop-profile-symbol-list", cl::init(false), cl::Hidden,
+ cl::desc("Drop the profile symbol list when merging AutoFDO profiles "
+ "(only meaningful for -sample)"));
+
+ cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
+
+ WeightedFileVector WeightedInputs;
+ for (StringRef Filename : InputFilenames)
+ addWeightedInput(WeightedInputs, {std::string(Filename), 1});
+ for (StringRef WeightedFilename : WeightedInputFilenames)
+ addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
+
+ // Make sure that the file buffer stays alive for the duration of the
+ // weighted input vector's lifetime.
+ auto Buffer = getInputFileBuf(InputFilenamesFile);
+ parseInputFilenamesFile(Buffer.get(), WeightedInputs);
+
+ if (WeightedInputs.empty())
+ exitWithError("no input files specified. See " +
+ sys::path::filename(argv[0]) + " -help");
+
+ if (DumpInputFileList) {
+ for (auto &WF : WeightedInputs)
+ outs() << WF.Weight << "," << WF.Filename << "\n";
+ return 0;
+ }
+
+ std::unique_ptr<SymbolRemapper> Remapper;
+ if (!RemappingFile.empty())
+ Remapper = SymbolRemapper::create(RemappingFile);
+
+ if (!SupplInstrWithSample.empty()) {
+ if (ProfileKind != instr)
+ exitWithError(
+ "-supplement-instr-with-sample can only work with -instr. ");
+
+ supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
+ OutputFormat, OutputSparse, SupplMinSizeThreshold,
+ ZeroCounterThreshold, InstrProfColdThreshold);
+ return 0;
+ }
+
+ if (ProfileKind == instr)
+ mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(),
+ OutputFilename, OutputFormat, OutputSparse, NumThreads,
+ FailureMode, ProfiledBinary);
+ else
+ mergeSampleProfile(
+ WeightedInputs, Remapper.get(), OutputFilename, OutputFormat,
+ ProfileSymbolListFile, CompressAllSections, UseMD5, GenPartialProfile,
+ GenCSNestedProfile, SampleMergeColdContext, SampleTrimColdContext,
+ SampleColdContextFrameDepth, FailureMode, DropProfileSymbolList);
+ return 0;
+}
+
+/// Computer the overlap b/w profile BaseFilename and profile TestFilename.
+static void overlapInstrProfile(const std::string &BaseFilename,
+ const std::string &TestFilename,
+ const OverlapFuncFilters &FuncFilter,
+ raw_fd_ostream &OS, bool IsCS) {
+ std::mutex ErrorLock;
+ SmallSet<instrprof_error, 4> WriterErrorCodes;
+ WriterContext Context(false, ErrorLock, WriterErrorCodes);
+ WeightedFile WeightedInput{BaseFilename, 1};
+ OverlapStats Overlap;
+ Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
+ if (E)
+ exitWithError(std::move(E), "error in getting profile count sums");
+ if (Overlap.Base.CountSum < 1.0f) {
+ OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
+ exit(0);
+ }
+ if (Overlap.Test.CountSum < 1.0f) {
+ OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
+ exit(0);
+ }
+ loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context);
+ overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
+ IsCS);
+ Overlap.dump(OS);
+}
+
+namespace {
+struct SampleOverlapStats {
+ SampleContext BaseName;
+ SampleContext TestName;
+ // Number of overlap units
+ uint64_t OverlapCount;
+ // Total samples of overlap units
+ uint64_t OverlapSample;
+ // Number of and total samples of units that only present in base or test
+ // profile
+ uint64_t BaseUniqueCount;
+ uint64_t BaseUniqueSample;
+ uint64_t TestUniqueCount;
+ uint64_t TestUniqueSample;
+ // Number of units and total samples in base or test profile
+ uint64_t BaseCount;
+ uint64_t BaseSample;
+ uint64_t TestCount;
+ uint64_t TestSample;
+ // Number of and total samples of units that present in at least one profile
+ uint64_t UnionCount;
+ uint64_t UnionSample;
+ // Weighted similarity
+ double Similarity;
+ // For SampleOverlapStats instances representing functions, weights of the
+ // function in base and test profiles
+ double BaseWeight;
+ double TestWeight;
+
+ SampleOverlapStats()
+ : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
+ BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
+ BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
+ UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
+};
+} // end anonymous namespace
+
+namespace {
+struct FuncSampleStats {
+ uint64_t SampleSum;
+ uint64_t MaxSample;
+ uint64_t HotBlockCount;
+ FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
+ FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
+ uint64_t HotBlockCount)
+ : SampleSum(SampleSum), MaxSample(MaxSample),
+ HotBlockCount(HotBlockCount) {}
+};
+} // end anonymous namespace
+
+namespace {
+enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
+
+// Class for updating merging steps for two sorted maps. The class should be
+// instantiated with a map iterator type.
+template <class T> class MatchStep {
+public:
+ MatchStep() = delete;
+
+ MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
+ : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
+ SecondEnd(SecondEnd), Status(MS_None) {}
+
+ bool areBothFinished() const {
+ return (FirstIter == FirstEnd && SecondIter == SecondEnd);
+ }
+
+ bool isFirstFinished() const { return FirstIter == FirstEnd; }
+
+ bool isSecondFinished() const { return SecondIter == SecondEnd; }
+
+ /// Advance one step based on the previous match status unless the previous
+ /// status is MS_None. Then update Status based on the comparison between two
+ /// container iterators at the current step. If the previous status is
+ /// MS_None, it means two iterators are at the beginning and no comparison has
+ /// been made, so we simply update Status without advancing the iterators.
+ void updateOneStep();
+
+ T getFirstIter() const { return FirstIter; }
+
+ T getSecondIter() const { return SecondIter; }
+
+ MatchStatus getMatchStatus() const { return Status; }
+
+private:
+ // Current iterator and end iterator of the first container.
+ T FirstIter;
+ T FirstEnd;
+ // Current iterator and end iterator of the second container.
+ T SecondIter;
+ T SecondEnd;
+ // Match status of the current step.
+ MatchStatus Status;
+};
+} // end anonymous namespace
+
+template <class T> void MatchStep<T>::updateOneStep() {
+ switch (Status) {
+ case MS_Match:
+ ++FirstIter;
+ ++SecondIter;
+ break;
+ case MS_FirstUnique:
+ ++FirstIter;
+ break;
+ case MS_SecondUnique:
+ ++SecondIter;
+ break;
+ case MS_None:
+ break;
+ }
+
+ // Update Status according to iterators at the current step.
+ if (areBothFinished())
+ return;
+ if (FirstIter != FirstEnd &&
+ (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
+ Status = MS_FirstUnique;
+ else if (SecondIter != SecondEnd &&
+ (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
+ Status = MS_SecondUnique;
+ else
+ Status = MS_Match;
+}
+
+// Return the sum of line/block samples, the max line/block sample, and the
+// number of line/block samples above the given threshold in a function
+// including its inlinees.
+static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
+ FuncSampleStats &FuncStats,
+ uint64_t HotThreshold) {
+ for (const auto &L : Func.getBodySamples()) {
+ uint64_t Sample = L.second.getSamples();
+ FuncStats.SampleSum += Sample;
+ FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
+ if (Sample >= HotThreshold)
+ ++FuncStats.HotBlockCount;
+ }
+
+ for (const auto &C : Func.getCallsiteSamples()) {
+ for (const auto &F : C.second)
+ getFuncSampleStats(F.second, FuncStats, HotThreshold);
+ }
+}
+
+/// Predicate that determines if a function is hot with a given threshold. We
+/// keep it separate from its callsites for possible extension in the future.
+static bool isFunctionHot(const FuncSampleStats &FuncStats,
+ uint64_t HotThreshold) {
+ // We intentionally compare the maximum sample count in a function with the
+ // HotThreshold to get an approximate determination on hot functions.
+ return (FuncStats.MaxSample >= HotThreshold);
+}
+
+namespace {
+class SampleOverlapAggregator {
+public:
+ SampleOverlapAggregator(const std::string &BaseFilename,
+ const std::string &TestFilename,
+ double LowSimilarityThreshold, double Epsilon,
+ const OverlapFuncFilters &FuncFilter)
+ : BaseFilename(BaseFilename), TestFilename(TestFilename),
+ LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
+ FuncFilter(FuncFilter) {}
+
+ /// Detect 0-sample input profile and report to output stream. This interface
+ /// should be called after loadProfiles().
+ bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
+
+ /// Write out function-level similarity statistics for functions specified by
+ /// options --function, --value-cutoff, and --similarity-cutoff.
+ void dumpFuncSimilarity(raw_fd_ostream &OS) const;
+
+ /// Write out program-level similarity and overlap statistics.
+ void dumpProgramSummary(raw_fd_ostream &OS) const;
+
+ /// Write out hot-function and hot-block statistics for base_profile,
+ /// test_profile, and their overlap. For both cases, the overlap HO is
+ /// calculated as follows:
+ /// Given the number of functions (or blocks) that are hot in both profiles
+ /// HCommon and the number of functions (or blocks) that are hot in at
+ /// least one profile HUnion, HO = HCommon / HUnion.
+ void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
+
+ /// This function tries matching functions in base and test profiles. For each
+ /// pair of matched functions, it aggregates the function-level
+ /// similarity into a profile-level similarity. It also dump function-level
+ /// similarity information of functions specified by --function,
+ /// --value-cutoff, and --similarity-cutoff options. The program-level
+ /// similarity PS is computed as follows:
+ /// Given function-level similarity FS(A) for all function A, the
+ /// weight of function A in base profile WB(A), and the weight of function
+ /// A in test profile WT(A), compute PS(base_profile, test_profile) =
+ /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
+ /// meaning no-overlap.
+ void computeSampleProfileOverlap(raw_fd_ostream &OS);
+
+ /// Initialize ProfOverlap with the sum of samples in base and test
+ /// profiles. This function also computes and keeps the sum of samples and
+ /// max sample counts of each function in BaseStats and TestStats for later
+ /// use to avoid re-computations.
+ void initializeSampleProfileOverlap();
+
+ /// Load profiles specified by BaseFilename and TestFilename.
+ std::error_code loadProfiles();
+
+ using FuncSampleStatsMap =
+ std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
+
+private:
+ SampleOverlapStats ProfOverlap;
+ SampleOverlapStats HotFuncOverlap;
+ SampleOverlapStats HotBlockOverlap;
+ std::string BaseFilename;
+ std::string TestFilename;
+ std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
+ std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
+ // BaseStats and TestStats hold FuncSampleStats for each function, with
+ // function name as the key.
+ FuncSampleStatsMap BaseStats;
+ FuncSampleStatsMap TestStats;
+ // Low similarity threshold in floating point number
+ double LowSimilarityThreshold;
+ // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
+ // for tracking hot blocks.
+ uint64_t BaseHotThreshold;
+ uint64_t TestHotThreshold;
+ // A small threshold used to round the results of floating point accumulations
+ // to resolve imprecision.
+ const double Epsilon;
+ std::multimap<double, SampleOverlapStats, std::greater<double>>
+ FuncSimilarityDump;
+ // FuncFilter carries specifications in options --value-cutoff and
+ // --function.
+ OverlapFuncFilters FuncFilter;
+ // Column offsets for printing the function-level details table.
+ static const unsigned int TestWeightCol = 15;
+ static const unsigned int SimilarityCol = 30;
+ static const unsigned int OverlapCol = 43;
+ static const unsigned int BaseUniqueCol = 53;
+ static const unsigned int TestUniqueCol = 67;
+ static const unsigned int BaseSampleCol = 81;
+ static const unsigned int TestSampleCol = 96;
+ static const unsigned int FuncNameCol = 111;
+
+ /// Return a similarity of two line/block sample counters in the same
+ /// function in base and test profiles. The line/block-similarity BS(i) is
+ /// computed as follows:
+ /// For an offsets i, given the sample count at i in base profile BB(i),
+ /// the sample count at i in test profile BT(i), the sum of sample counts
+ /// in this function in base profile SB, and the sum of sample counts in
+ /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
+ /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
+ double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
+ const SampleOverlapStats &FuncOverlap) const;
+
+ void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
+ uint64_t HotBlockCount);
+
+ void getHotFunctions(const FuncSampleStatsMap &ProfStats,
+ FuncSampleStatsMap &HotFunc,
+ uint64_t HotThreshold) const;
+
+ void computeHotFuncOverlap();
+
+ /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
+ /// Difference for two sample units in a matched function according to the
+ /// given match status.
+ void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
+ uint64_t HotBlockCount,
+ SampleOverlapStats &FuncOverlap,
+ double &Difference, MatchStatus Status);
+
+ /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
+ /// Difference for unmatched callees that only present in one profile in a
+ /// matched caller function.
+ void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
+ SampleOverlapStats &FuncOverlap,
+ double &Difference, MatchStatus Status);
+
+ /// This function updates sample overlap statistics of an overlap function in
+ /// base and test profile. It also calculates a function-internal similarity
+ /// FIS as follows:
+ /// For offsets i that have samples in at least one profile in this
+ /// function A, given BS(i) returned by computeBlockSimilarity(), compute
+ /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
+ /// 0.0 meaning no overlap.
+ double computeSampleFunctionInternalOverlap(
+ const sampleprof::FunctionSamples &BaseFunc,
+ const sampleprof::FunctionSamples &TestFunc,
+ SampleOverlapStats &FuncOverlap);
+
+ /// Function-level similarity (FS) is a weighted value over function internal
+ /// similarity (FIS). This function computes a function's FS from its FIS by
+ /// applying the weight.
+ double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
+ uint64_t TestFuncSample) const;
+
+ /// The function-level similarity FS(A) for a function A is computed as
+ /// follows:
+ /// Compute a function-internal similarity FIS(A) by
+ /// computeSampleFunctionInternalOverlap(). Then, with the weight of
+ /// function A in base profile WB(A), and the weight of function A in test
+ /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
+ /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
+ double
+ computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
+ const sampleprof::FunctionSamples *TestFunc,
+ SampleOverlapStats *FuncOverlap,
+ uint64_t BaseFuncSample,
+ uint64_t TestFuncSample);
+
+ /// Profile-level similarity (PS) is a weighted aggregate over function-level
+ /// similarities (FS). This method weights the FS value by the function
+ /// weights in the base and test profiles for the aggregation.
+ double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
+ uint64_t TestFuncSample) const;
+};
+} // end anonymous namespace
+
+bool SampleOverlapAggregator::detectZeroSampleProfile(
+ raw_fd_ostream &OS) const {
+ bool HaveZeroSample = false;
+ if (ProfOverlap.BaseSample == 0) {
+ OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
+ HaveZeroSample = true;
+ }
+ if (ProfOverlap.TestSample == 0) {
+ OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
+ HaveZeroSample = true;
+ }
+ return HaveZeroSample;
+}
+
+double SampleOverlapAggregator::computeBlockSimilarity(
+ uint64_t BaseSample, uint64_t TestSample,
+ const SampleOverlapStats &FuncOverlap) const {
+ double BaseFrac = 0.0;
+ double TestFrac = 0.0;
+ if (FuncOverlap.BaseSample > 0)
+ BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
+ if (FuncOverlap.TestSample > 0)
+ TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
+ return 1.0 - std::fabs(BaseFrac - TestFrac);
+}
+
+void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
+ uint64_t TestSample,
+ uint64_t HotBlockCount) {
+ bool IsBaseHot = (BaseSample >= BaseHotThreshold);
+ bool IsTestHot = (TestSample >= TestHotThreshold);
+ if (!IsBaseHot && !IsTestHot)
+ return;
+
+ HotBlockOverlap.UnionCount += HotBlockCount;
+ if (IsBaseHot)
+ HotBlockOverlap.BaseCount += HotBlockCount;
+ if (IsTestHot)
+ HotBlockOverlap.TestCount += HotBlockCount;
+ if (IsBaseHot && IsTestHot)
+ HotBlockOverlap.OverlapCount += HotBlockCount;
+}
+
+void SampleOverlapAggregator::getHotFunctions(
+ const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
+ uint64_t HotThreshold) const {
+ for (const auto &F : ProfStats) {
+ if (isFunctionHot(F.second, HotThreshold))
+ HotFunc.emplace(F.first, F.second);
+ }
+}
+
+void SampleOverlapAggregator::computeHotFuncOverlap() {
+ FuncSampleStatsMap BaseHotFunc;
+ getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
+ HotFuncOverlap.BaseCount = BaseHotFunc.size();
+
+ FuncSampleStatsMap TestHotFunc;
+ getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
+ HotFuncOverlap.TestCount = TestHotFunc.size();
+ HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
+
+ for (const auto &F : BaseHotFunc) {
+ if (TestHotFunc.count(F.first))
+ ++HotFuncOverlap.OverlapCount;
+ else
+ ++HotFuncOverlap.UnionCount;
+ }
+}
+
+void SampleOverlapAggregator::updateOverlapStatsForFunction(
+ uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
+ SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
+ assert(Status != MS_None &&
+ "Match status should be updated before updating overlap statistics");
+ if (Status == MS_FirstUnique) {
+ TestSample = 0;
+ FuncOverlap.BaseUniqueSample += BaseSample;
+ } else if (Status == MS_SecondUnique) {
+ BaseSample = 0;
+ FuncOverlap.TestUniqueSample += TestSample;
+ } else {
+ ++FuncOverlap.OverlapCount;
+ }
+
+ FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
+ FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
+ Difference +=
+ 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
+ updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
+}
+
+void SampleOverlapAggregator::updateForUnmatchedCallee(
+ const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
+ double &Difference, MatchStatus Status) {
+ assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
+ "Status must be either of the two unmatched cases");
+ FuncSampleStats FuncStats;
+ if (Status == MS_FirstUnique) {
+ getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
+ updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
+ FuncStats.HotBlockCount, FuncOverlap,
+ Difference, Status);
+ } else {
+ getFuncSampleStats(Func, FuncStats, TestHotThreshold);
+ updateOverlapStatsForFunction(0, FuncStats.SampleSum,
+ FuncStats.HotBlockCount, FuncOverlap,
+ Difference, Status);
+ }
+}
+
+double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
+ const sampleprof::FunctionSamples &BaseFunc,
+ const sampleprof::FunctionSamples &TestFunc,
+ SampleOverlapStats &FuncOverlap) {
+
+ using namespace sampleprof;
+
+ double Difference = 0;
+
+ // Accumulate Difference for regular line/block samples in the function.
+ // We match them through sort-merge join algorithm because
+ // FunctionSamples::getBodySamples() returns a map of sample counters ordered
+ // by their offsets.
+ MatchStep<BodySampleMap::const_iterator> BlockIterStep(
+ BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
+ TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
+ BlockIterStep.updateOneStep();
+ while (!BlockIterStep.areBothFinished()) {
+ uint64_t BaseSample =
+ BlockIterStep.isFirstFinished()
+ ? 0
+ : BlockIterStep.getFirstIter()->second.getSamples();
+ uint64_t TestSample =
+ BlockIterStep.isSecondFinished()
+ ? 0
+ : BlockIterStep.getSecondIter()->second.getSamples();
+ updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
+ Difference, BlockIterStep.getMatchStatus());
+
+ BlockIterStep.updateOneStep();
+ }
+
+ // Accumulate Difference for callsite lines in the function. We match
+ // them through sort-merge algorithm because
+ // FunctionSamples::getCallsiteSamples() returns a map of callsite records
+ // ordered by their offsets.
+ MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
+ BaseFunc.getCallsiteSamples().cbegin(),
+ BaseFunc.getCallsiteSamples().cend(),
+ TestFunc.getCallsiteSamples().cbegin(),
+ TestFunc.getCallsiteSamples().cend());
+ CallsiteIterStep.updateOneStep();
+ while (!CallsiteIterStep.areBothFinished()) {
+ MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
+ assert(CallsiteStepStatus != MS_None &&
+ "Match status should be updated before entering loop body");
+
+ if (CallsiteStepStatus != MS_Match) {
+ auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
+ ? CallsiteIterStep.getFirstIter()
+ : CallsiteIterStep.getSecondIter();
+ for (const auto &F : Callsite->second)
+ updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
+ CallsiteStepStatus);
+ } else {
+ // There may be multiple inlinees at the same offset, so we need to try
+ // matching all of them. This match is implemented through sort-merge
+ // algorithm because callsite records at the same offset are ordered by
+ // function names.
+ MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
+ CallsiteIterStep.getFirstIter()->second.cbegin(),
+ CallsiteIterStep.getFirstIter()->second.cend(),
+ CallsiteIterStep.getSecondIter()->second.cbegin(),
+ CallsiteIterStep.getSecondIter()->second.cend());
+ CalleeIterStep.updateOneStep();
+ while (!CalleeIterStep.areBothFinished()) {
+ MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
+ if (CalleeStepStatus != MS_Match) {
+ auto Callee = (CalleeStepStatus == MS_FirstUnique)
+ ? CalleeIterStep.getFirstIter()
+ : CalleeIterStep.getSecondIter();
+ updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
+ CalleeStepStatus);
+ } else {
+ // An inlined function can contain other inlinees inside, so compute
+ // the Difference recursively.
+ Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
+ CalleeIterStep.getFirstIter()->second,
+ CalleeIterStep.getSecondIter()->second,
+ FuncOverlap);
+ }
+ CalleeIterStep.updateOneStep();
+ }
+ }
+ CallsiteIterStep.updateOneStep();
+ }
+
+ // Difference reflects the total differences of line/block samples in this
+ // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
+ // reflect the similarity between function profiles in [0.0f to 1.0f].
+ return (2.0 - Difference) / 2;
+}
+
+double SampleOverlapAggregator::weightForFuncSimilarity(
+ double FuncInternalSimilarity, uint64_t BaseFuncSample,
+ uint64_t TestFuncSample) const {
+ // Compute the weight as the distance between the function weights in two
+ // profiles.
+ double BaseFrac = 0.0;
+ double TestFrac = 0.0;
+ assert(ProfOverlap.BaseSample > 0 &&
+ "Total samples in base profile should be greater than 0");
+ BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
+ assert(ProfOverlap.TestSample > 0 &&
+ "Total samples in test profile should be greater than 0");
+ TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
+ double WeightDistance = std::fabs(BaseFrac - TestFrac);
+
+ // Take WeightDistance into the similarity.
+ return FuncInternalSimilarity * (1 - WeightDistance);
+}
+
+double
+SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
+ uint64_t BaseFuncSample,
+ uint64_t TestFuncSample) const {
+
+ double BaseFrac = 0.0;
+ double TestFrac = 0.0;
+ assert(ProfOverlap.BaseSample > 0 &&
+ "Total samples in base profile should be greater than 0");
+ BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
+ assert(ProfOverlap.TestSample > 0 &&
+ "Total samples in test profile should be greater than 0");
+ TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
+ return FuncSimilarity * (BaseFrac + TestFrac);
+}
+
+double SampleOverlapAggregator::computeSampleFunctionOverlap(
+ const sampleprof::FunctionSamples *BaseFunc,
+ const sampleprof::FunctionSamples *TestFunc,
+ SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
+ uint64_t TestFuncSample) {
+ // Default function internal similarity before weighted, meaning two functions
+ // has no overlap.
+ const double DefaultFuncInternalSimilarity = 0;
+ double FuncSimilarity;
+ double FuncInternalSimilarity;
+
+ // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
+ // In this case, we use DefaultFuncInternalSimilarity as the function internal
+ // similarity.
+ if (!BaseFunc || !TestFunc) {
+ FuncInternalSimilarity = DefaultFuncInternalSimilarity;
+ } else {
+ assert(FuncOverlap != nullptr &&
+ "FuncOverlap should be provided in this case");
+ FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
+ *BaseFunc, *TestFunc, *FuncOverlap);
+ // Now, FuncInternalSimilarity may be a little less than 0 due to
+ // imprecision of floating point accumulations. Make it zero if the
+ // difference is below Epsilon.
+ FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
+ ? 0
+ : FuncInternalSimilarity;
+ }
+ FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
+ BaseFuncSample, TestFuncSample);
+ return FuncSimilarity;
+}
+
+void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
+ using namespace sampleprof;
+
+ std::unordered_map<SampleContext, const FunctionSamples *,
+ SampleContext::Hash>
+ BaseFuncProf;
+ const auto &BaseProfiles = BaseReader->getProfiles();
+ for (const auto &BaseFunc : BaseProfiles) {
+ BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
+ }
+ ProfOverlap.UnionCount = BaseFuncProf.size();
+
+ const auto &TestProfiles = TestReader->getProfiles();
+ for (const auto &TestFunc : TestProfiles) {
+ SampleOverlapStats FuncOverlap;
+ FuncOverlap.TestName = TestFunc.second.getContext();
+ assert(TestStats.count(FuncOverlap.TestName) &&
+ "TestStats should have records for all functions in test profile "
+ "except inlinees");
+ FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
+
+ bool Matched = false;
+ const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
+ if (Match == BaseFuncProf.end()) {
+ const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
+ ++ProfOverlap.TestUniqueCount;
+ ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
+ FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
+
+ updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
+
+ double FuncSimilarity = computeSampleFunctionOverlap(
+ nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
+ ProfOverlap.Similarity +=
+ weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
+
+ ++ProfOverlap.UnionCount;
+ ProfOverlap.UnionSample += FuncStats.SampleSum;
+ } else {
+ ++ProfOverlap.OverlapCount;
+
+ // Two functions match with each other. Compute function-level overlap and
+ // aggregate them into profile-level overlap.
+ FuncOverlap.BaseName = Match->second->getContext();
+ assert(BaseStats.count(FuncOverlap.BaseName) &&
+ "BaseStats should have records for all functions in base profile "
+ "except inlinees");
+ FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
+
+ FuncOverlap.Similarity = computeSampleFunctionOverlap(
+ Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
+ FuncOverlap.TestSample);
+ ProfOverlap.Similarity +=
+ weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
+ FuncOverlap.TestSample);
+ ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
+ ProfOverlap.UnionSample += FuncOverlap.UnionSample;
+
+ // Accumulate the percentage of base unique and test unique samples into
+ // ProfOverlap.
+ ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
+ ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
+
+ // Remove matched base functions for later reporting functions not found
+ // in test profile.
+ BaseFuncProf.erase(Match);
+ Matched = true;
+ }
+
+ // Print function-level similarity information if specified by options.
+ assert(TestStats.count(FuncOverlap.TestName) &&
+ "TestStats should have records for all functions in test profile "
+ "except inlinees");
+ if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
+ (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
+ (Matched && !FuncFilter.NameFilter.empty() &&
+ FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
+ std::string::npos)) {
+ assert(ProfOverlap.BaseSample > 0 &&
+ "Total samples in base profile should be greater than 0");
+ FuncOverlap.BaseWeight =
+ static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
+ assert(ProfOverlap.TestSample > 0 &&
+ "Total samples in test profile should be greater than 0");
+ FuncOverlap.TestWeight =
+ static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
+ FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
+ }
+ }
+
+ // Traverse through functions in base profile but not in test profile.
+ for (const auto &F : BaseFuncProf) {
+ assert(BaseStats.count(F.second->getContext()) &&
+ "BaseStats should have records for all functions in base profile "
+ "except inlinees");
+ const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
+ ++ProfOverlap.BaseUniqueCount;
+ ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
+
+ updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
+
+ double FuncSimilarity = computeSampleFunctionOverlap(
+ nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
+ ProfOverlap.Similarity +=
+ weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
+
+ ProfOverlap.UnionSample += FuncStats.SampleSum;
+ }
+
+ // Now, ProfSimilarity may be a little greater than 1 due to imprecision
+ // of floating point accumulations. Make it 1.0 if the difference is below
+ // Epsilon.
+ ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
+ ? 1
+ : ProfOverlap.Similarity;
+
+ computeHotFuncOverlap();
+}
+
+void SampleOverlapAggregator::initializeSampleProfileOverlap() {
+ const auto &BaseProf = BaseReader->getProfiles();
+ for (const auto &I : BaseProf) {
+ ++ProfOverlap.BaseCount;
+ FuncSampleStats FuncStats;
+ getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
+ ProfOverlap.BaseSample += FuncStats.SampleSum;
+ BaseStats.emplace(I.second.getContext(), FuncStats);
+ }
+
+ const auto &TestProf = TestReader->getProfiles();
+ for (const auto &I : TestProf) {
+ ++ProfOverlap.TestCount;
+ FuncSampleStats FuncStats;
+ getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
+ ProfOverlap.TestSample += FuncStats.SampleSum;
+ TestStats.emplace(I.second.getContext(), FuncStats);
+ }
+
+ ProfOverlap.BaseName = StringRef(BaseFilename);
+ ProfOverlap.TestName = StringRef(TestFilename);
+}
+
+void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
+ using namespace sampleprof;
+
+ if (FuncSimilarityDump.empty())
+ return;
+
+ formatted_raw_ostream FOS(OS);
+ FOS << "Function-level details:\n";
+ FOS << "Base weight";
+ FOS.PadToColumn(TestWeightCol);
+ FOS << "Test weight";
+ FOS.PadToColumn(SimilarityCol);
+ FOS << "Similarity";
+ FOS.PadToColumn(OverlapCol);
+ FOS << "Overlap";
+ FOS.PadToColumn(BaseUniqueCol);
+ FOS << "Base unique";
+ FOS.PadToColumn(TestUniqueCol);
+ FOS << "Test unique";
+ FOS.PadToColumn(BaseSampleCol);
+ FOS << "Base samples";
+ FOS.PadToColumn(TestSampleCol);
+ FOS << "Test samples";
+ FOS.PadToColumn(FuncNameCol);
+ FOS << "Function name\n";
+ for (const auto &F : FuncSimilarityDump) {
+ double OverlapPercent =
+ F.second.UnionSample > 0
+ ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
+ : 0;
+ double BaseUniquePercent =
+ F.second.BaseSample > 0
+ ? static_cast<double>(F.second.BaseUniqueSample) /
+ F.second.BaseSample
+ : 0;
+ double TestUniquePercent =
+ F.second.TestSample > 0
+ ? static_cast<double>(F.second.TestUniqueSample) /
+ F.second.TestSample
+ : 0;
+
+ FOS << format("%.2f%%", F.second.BaseWeight * 100);
+ FOS.PadToColumn(TestWeightCol);
+ FOS << format("%.2f%%", F.second.TestWeight * 100);
+ FOS.PadToColumn(SimilarityCol);
+ FOS << format("%.2f%%", F.second.Similarity * 100);
+ FOS.PadToColumn(OverlapCol);
+ FOS << format("%.2f%%", OverlapPercent * 100);
+ FOS.PadToColumn(BaseUniqueCol);
+ FOS << format("%.2f%%", BaseUniquePercent * 100);
+ FOS.PadToColumn(TestUniqueCol);
+ FOS << format("%.2f%%", TestUniquePercent * 100);
+ FOS.PadToColumn(BaseSampleCol);
+ FOS << F.second.BaseSample;
+ FOS.PadToColumn(TestSampleCol);
+ FOS << F.second.TestSample;
+ FOS.PadToColumn(FuncNameCol);
+ FOS << F.second.TestName.toString() << "\n";
+ }
+}
+
+void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
+ OS << "Profile overlap infomation for base_profile: "
+ << ProfOverlap.BaseName.toString()
+ << " and test_profile: " << ProfOverlap.TestName.toString()
+ << "\nProgram level:\n";
+
+ OS << " Whole program profile similarity: "
+ << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
+
+ assert(ProfOverlap.UnionSample > 0 &&
+ "Total samples in two profile should be greater than 0");
+ double OverlapPercent =
+ static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
+ assert(ProfOverlap.BaseSample > 0 &&
+ "Total samples in base profile should be greater than 0");
+ double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
+ ProfOverlap.BaseSample;
+ assert(ProfOverlap.TestSample > 0 &&
+ "Total samples in test profile should be greater than 0");
+ double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
+ ProfOverlap.TestSample;
+
+ OS << " Whole program sample overlap: "
+ << format("%.3f%%", OverlapPercent * 100) << "\n";
+ OS << " percentage of samples unique in base profile: "
+ << format("%.3f%%", BaseUniquePercent * 100) << "\n";
+ OS << " percentage of samples unique in test profile: "
+ << format("%.3f%%", TestUniquePercent * 100) << "\n";
+ OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
+ << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
+
+ assert(ProfOverlap.UnionCount > 0 &&
+ "There should be at least one function in two input profiles");
+ double FuncOverlapPercent =
+ static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
+ OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
+ << "\n";
+ OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
+ OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
+ << "\n";
+ OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
+ << "\n";
+}
+
+void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
+ raw_fd_ostream &OS) const {
+ assert(HotFuncOverlap.UnionCount > 0 &&
+ "There should be at least one hot function in two input profiles");
+ OS << " Hot-function overlap: "
+ << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
+ HotFuncOverlap.UnionCount * 100)
+ << "\n";
+ OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
+ OS << " hot functions unique in base profile: "
+ << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
+ OS << " hot functions unique in test profile: "
+ << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
+
+ assert(HotBlockOverlap.UnionCount > 0 &&
+ "There should be at least one hot block in two input profiles");
+ OS << " Hot-block overlap: "
+ << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
+ HotBlockOverlap.UnionCount * 100)
+ << "\n";
+ OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
+ OS << " hot blocks unique in base profile: "
+ << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
+ OS << " hot blocks unique in test profile: "
+ << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
+}
+
+std::error_code SampleOverlapAggregator::loadProfiles() {
+ using namespace sampleprof;
+
+ LLVMContext Context;
+ auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
+ FSDiscriminatorPassOption);
+ if (std::error_code EC = BaseReaderOrErr.getError())
+ exitWithErrorCode(EC, BaseFilename);
+
+ auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
+ FSDiscriminatorPassOption);
+ if (std::error_code EC = TestReaderOrErr.getError())
+ exitWithErrorCode(EC, TestFilename);
+
+ BaseReader = std::move(BaseReaderOrErr.get());
+ TestReader = std::move(TestReaderOrErr.get());
+
+ if (std::error_code EC = BaseReader->read())
+ exitWithErrorCode(EC, BaseFilename);
+ if (std::error_code EC = TestReader->read())
+ exitWithErrorCode(EC, TestFilename);
+ if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
+ exitWithError(
+ "cannot compare probe-based profile with non-probe-based profile");
+ if (BaseReader->profileIsCS() != TestReader->profileIsCS())
+ exitWithError("cannot compare CS profile with non-CS profile");
+
+ // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
+ // profile summary.
+ ProfileSummary &BasePS = BaseReader->getSummary();
+ ProfileSummary &TestPS = TestReader->getSummary();
+ BaseHotThreshold =
+ ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
+ TestHotThreshold =
+ ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
+
+ return std::error_code();
+}
+
+void overlapSampleProfile(const std::string &BaseFilename,
+ const std::string &TestFilename,
+ const OverlapFuncFilters &FuncFilter,
+ uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
+ using namespace sampleprof;
+
+ // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
+ // report 2--3 places after decimal point in percentage numbers.
+ SampleOverlapAggregator OverlapAggr(
+ BaseFilename, TestFilename,
+ static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
+ if (std::error_code EC = OverlapAggr.loadProfiles())
+ exitWithErrorCode(EC);
+
+ OverlapAggr.initializeSampleProfileOverlap();
+ if (OverlapAggr.detectZeroSampleProfile(OS))
+ return;
+
+ OverlapAggr.computeSampleProfileOverlap(OS);
+
+ OverlapAggr.dumpProgramSummary(OS);
+ OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
+ OverlapAggr.dumpFuncSimilarity(OS);
+}
+
+static int overlap_main(int argc, const char *argv[]) {
+ cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
+ cl::desc("<base profile file>"));
+ cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
+ cl::desc("<test profile file>"));
+ cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
+ cl::desc("Output file"));
+ cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
+ cl::opt<bool> IsCS(
+ "cs", cl::init(false),
+ cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
+ cl::opt<unsigned long long> ValueCutoff(
+ "value-cutoff", cl::init(-1),
+ cl::desc(
+ "Function level overlap information for every function (with calling "
+ "context for csspgo) in test "
+ "profile with max count value greater then the parameter value"));
+ cl::opt<std::string> FuncNameFilter(
+ "function",
+ cl::desc("Function level overlap information for matching functions. For "
+ "CSSPGO this takes a a function name with calling context"));
+ cl::opt<unsigned long long> SimilarityCutoff(
+ "similarity-cutoff", cl::init(0),
+ cl::desc("For sample profiles, list function names (with calling context "
+ "for csspgo) for overlapped functions "
+ "with similarities below the cutoff (percentage times 10000)."));
+ cl::opt<ProfileKinds> ProfileKind(
+ cl::desc("Profile kind:"), cl::init(instr),
+ cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
+ clEnumVal(sample, "Sample profile")));
+ cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
+
+ std::error_code EC;
+ raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
+ if (EC)
+ exitWithErrorCode(EC, Output);
+
+ if (ProfileKind == instr)
+ overlapInstrProfile(BaseFilename, TestFilename,
+ OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
+ IsCS);
+ else
+ overlapSampleProfile(BaseFilename, TestFilename,
+ OverlapFuncFilters{ValueCutoff, FuncNameFilter},
+ SimilarityCutoff, OS);
+
+ return 0;
+}
+
+namespace {
+struct ValueSitesStats {
+ ValueSitesStats()
+ : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
+ TotalNumValues(0) {}
+ uint64_t TotalNumValueSites;
+ uint64_t TotalNumValueSitesWithValueProfile;
+ uint64_t TotalNumValues;
+ std::vector<unsigned> ValueSitesHistogram;
+};
+} // namespace
+
+static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
+ ValueSitesStats &Stats, raw_fd_ostream &OS,
+ InstrProfSymtab *Symtab) {
+ uint32_t NS = Func.getNumValueSites(VK);
+ Stats.TotalNumValueSites += NS;
+ for (size_t I = 0; I < NS; ++I) {
+ uint32_t NV = Func.getNumValueDataForSite(VK, I);
+ std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
+ Stats.TotalNumValues += NV;
+ if (NV) {
+ Stats.TotalNumValueSitesWithValueProfile++;
+ if (NV > Stats.ValueSitesHistogram.size())
+ Stats.ValueSitesHistogram.resize(NV, 0);
+ Stats.ValueSitesHistogram[NV - 1]++;
+ }
+
+ uint64_t SiteSum = 0;
+ for (uint32_t V = 0; V < NV; V++)
+ SiteSum += VD[V].Count;
+ if (SiteSum == 0)
+ SiteSum = 1;
+
+ for (uint32_t V = 0; V < NV; V++) {
+ OS << "\t[ " << format("%2u", I) << ", ";
+ if (Symtab == nullptr)
+ OS << format("%4" PRIu64, VD[V].Value);
+ else
+ OS << Symtab->getFuncName(VD[V].Value);
+ OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
+ << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
+ }
+ }
+}
+
+static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
+ ValueSitesStats &Stats) {
+ OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
+ OS << " Total number of sites with values: "
+ << Stats.TotalNumValueSitesWithValueProfile << "\n";
+ OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
+
+ OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
+ for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
+ if (Stats.ValueSitesHistogram[I] > 0)
+ OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
+ }
+}
+
+static int showInstrProfile(const std::string &Filename, bool ShowCounts,
+ uint32_t TopN, bool ShowIndirectCallTargets,
+ bool ShowMemOPSizes, bool ShowDetailedSummary,
+ std::vector<uint32_t> DetailedSummaryCutoffs,
+ bool ShowAllFunctions, bool ShowCS,
+ uint64_t ValueCutoff, bool OnlyListBelow,
+ const std::string &ShowFunction, bool TextFormat,
+ bool ShowBinaryIds, bool ShowCovered,
+ bool ShowProfileVersion, ShowFormat SFormat,
+ raw_fd_ostream &OS) {
+ if (SFormat == ShowFormat::Json)
+ exitWithError("JSON output is not supported for instr profiles");
+ if (SFormat == ShowFormat::Yaml)
+ exitWithError("YAML output is not supported for instr profiles");
+ auto ReaderOrErr = InstrProfReader::create(Filename);
+ std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
+ if (ShowDetailedSummary && Cutoffs.empty()) {
+ Cutoffs = ProfileSummaryBuilder::DefaultCutoffs;
+ }
+ InstrProfSummaryBuilder Builder(std::move(Cutoffs));
+ if (Error E = ReaderOrErr.takeError())
+ exitWithError(std::move(E), Filename);
+
+ auto Reader = std::move(ReaderOrErr.get());
+ bool IsIRInstr = Reader->isIRLevelProfile();
+ size_t ShownFunctions = 0;
+ size_t BelowCutoffFunctions = 0;
+ int NumVPKind = IPVK_Last - IPVK_First + 1;
+ std::vector<ValueSitesStats> VPStats(NumVPKind);
+
+ auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
+ const std::pair<std::string, uint64_t> &v2) {
+ return v1.second > v2.second;
+ };
+
+ std::priority_queue<std::pair<std::string, uint64_t>,
+ std::vector<std::pair<std::string, uint64_t>>,
+ decltype(MinCmp)>
+ HottestFuncs(MinCmp);
+
+ if (!TextFormat && OnlyListBelow) {
+ OS << "The list of functions with the maximum counter less than "
+ << ValueCutoff << ":\n";
+ }
+
+ // Add marker so that IR-level instrumentation round-trips properly.
+ if (TextFormat && IsIRInstr)
+ OS << ":ir\n";
+
+ for (const auto &Func : *Reader) {
+ if (Reader->isIRLevelProfile()) {
+ bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
+ if (FuncIsCS != ShowCS)
+ continue;
+ }
+ bool Show = ShowAllFunctions ||
+ (!ShowFunction.empty() && Func.Name.contains(ShowFunction));
+
+ bool doTextFormatDump = (Show && TextFormat);
+
+ if (doTextFormatDump) {
+ InstrProfSymtab &Symtab = Reader->getSymtab();
+ InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
+ OS);
+ continue;
+ }
+
+ assert(Func.Counts.size() > 0 && "function missing entry counter");
+ Builder.addRecord(Func);
+
+ if (ShowCovered) {
+ if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; }))
+ OS << Func.Name << "\n";
+ continue;
+ }
+
+ uint64_t FuncMax = 0;
+ uint64_t FuncSum = 0;
+
+ auto PseudoKind = Func.getCountPseudoKind();
+ if (PseudoKind != InstrProfRecord::NotPseudo) {
+ if (Show) {
+ if (!ShownFunctions)
+ OS << "Counters:\n";
+ ++ShownFunctions;
+ OS << " " << Func.Name << ":\n"
+ << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
+ << " Counters: " << Func.Counts.size();
+ if (PseudoKind == InstrProfRecord::PseudoHot)
+ OS << " <PseudoHot>\n";
+ else if (PseudoKind == InstrProfRecord::PseudoWarm)
+ OS << " <PseudoWarm>\n";
+ else
+ llvm_unreachable("Unknown PseudoKind");
+ }
+ continue;
+ }
+
+ for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
+ FuncMax = std::max(FuncMax, Func.Counts[I]);
+ FuncSum += Func.Counts[I];
+ }
+
+ if (FuncMax < ValueCutoff) {
+ ++BelowCutoffFunctions;
+ if (OnlyListBelow) {
+ OS << " " << Func.Name << ": (Max = " << FuncMax
+ << " Sum = " << FuncSum << ")\n";
+ }
+ continue;
+ } else if (OnlyListBelow)
+ continue;
+
+ if (TopN) {
+ if (HottestFuncs.size() == TopN) {
+ if (HottestFuncs.top().second < FuncMax) {
+ HottestFuncs.pop();
+ HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
+ }
+ } else
+ HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
+ }
+
+ if (Show) {
+ if (!ShownFunctions)
+ OS << "Counters:\n";
+
+ ++ShownFunctions;
+
+ OS << " " << Func.Name << ":\n"
+ << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
+ << " Counters: " << Func.Counts.size() << "\n";
+ if (!IsIRInstr)
+ OS << " Function count: " << Func.Counts[0] << "\n";
+
+ if (ShowIndirectCallTargets)
+ OS << " Indirect Call Site Count: "
+ << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
+
+ uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
+ if (ShowMemOPSizes && NumMemOPCalls > 0)
+ OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
+ << "\n";
+
+ if (ShowCounts) {
+ OS << " Block counts: [";
+ size_t Start = (IsIRInstr ? 0 : 1);
+ for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
+ OS << (I == Start ? "" : ", ") << Func.Counts[I];
+ }
+ OS << "]\n";
+ }
+
+ if (ShowIndirectCallTargets) {
+ OS << " Indirect Target Results:\n";
+ traverseAllValueSites(Func, IPVK_IndirectCallTarget,
+ VPStats[IPVK_IndirectCallTarget], OS,
+ &(Reader->getSymtab()));
+ }
+
+ if (ShowMemOPSizes && NumMemOPCalls > 0) {
+ OS << " Memory Intrinsic Size Results:\n";
+ traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
+ nullptr);
+ }
+ }
+ }
+ if (Reader->hasError())
+ exitWithError(Reader->getError(), Filename);
+
+ if (TextFormat || ShowCovered)
+ return 0;
+ std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
+ bool IsIR = Reader->isIRLevelProfile();
+ OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
+ if (IsIR)
+ OS << " entry_first = " << Reader->instrEntryBBEnabled();
+ OS << "\n";
+ if (ShowAllFunctions || !ShowFunction.empty())
+ OS << "Functions shown: " << ShownFunctions << "\n";
+ OS << "Total functions: " << PS->getNumFunctions() << "\n";
+ if (ValueCutoff > 0) {
+ OS << "Number of functions with maximum count (< " << ValueCutoff
+ << "): " << BelowCutoffFunctions << "\n";
+ OS << "Number of functions with maximum count (>= " << ValueCutoff
+ << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
+ }
+ OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
+ OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
+
+ if (TopN) {
+ std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
+ while (!HottestFuncs.empty()) {
+ SortedHottestFuncs.emplace_back(HottestFuncs.top());
+ HottestFuncs.pop();
+ }
+ OS << "Top " << TopN
+ << " functions with the largest internal block counts: \n";
+ for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
+ OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
+ }
+
+ if (ShownFunctions && ShowIndirectCallTargets) {
+ OS << "Statistics for indirect call sites profile:\n";
+ showValueSitesStats(OS, IPVK_IndirectCallTarget,
+ VPStats[IPVK_IndirectCallTarget]);
+ }
+
+ if (ShownFunctions && ShowMemOPSizes) {
+ OS << "Statistics for memory intrinsic calls sizes profile:\n";
+ showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
+ }
+
+ if (ShowDetailedSummary) {
+ OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
+ OS << "Total count: " << PS->getTotalCount() << "\n";
+ PS->printDetailedSummary(OS);
+ }
+
+ if (ShowBinaryIds)
+ if (Error E = Reader->printBinaryIds(OS))
+ exitWithError(std::move(E), Filename);
+
+ if (ShowProfileVersion)
+ OS << "Profile version: " << Reader->getVersion() << "\n";
+ return 0;
+}
+
+static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
+ raw_fd_ostream &OS) {
+ if (!Reader->dumpSectionInfo(OS)) {
+ WithColor::warning() << "-show-sec-info-only is only supported for "
+ << "sample profile in extbinary format and is "
+ << "ignored for other formats.\n";
+ return;
+ }
+}
+
+namespace {
+struct HotFuncInfo {
+ std::string FuncName;
+ uint64_t TotalCount;
+ double TotalCountPercent;
+ uint64_t MaxCount;
+ uint64_t EntryCount;
+
+ HotFuncInfo()
+ : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {}
+
+ HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
+ : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
+ MaxCount(MS), EntryCount(ES) {}
+};
+} // namespace
+
+// Print out detailed information about hot functions in PrintValues vector.
+// Users specify titles and offset of every columns through ColumnTitle and
+// ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
+// and at least 4. Besides, users can optionally give a HotFuncMetric string to
+// print out or let it be an empty string.
+static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
+ const std::vector<int> &ColumnOffset,
+ const std::vector<HotFuncInfo> &PrintValues,
+ uint64_t HotFuncCount, uint64_t TotalFuncCount,
+ uint64_t HotProfCount, uint64_t TotalProfCount,
+ const std::string &HotFuncMetric,
+ uint32_t TopNFunctions, raw_fd_ostream &OS) {
+ assert(ColumnOffset.size() == ColumnTitle.size() &&
+ "ColumnOffset and ColumnTitle should have the same size");
+ assert(ColumnTitle.size() >= 4 &&
+ "ColumnTitle should have at least 4 elements");
+ assert(TotalFuncCount > 0 &&
+ "There should be at least one function in the profile");
+ double TotalProfPercent = 0;
+ if (TotalProfCount > 0)
+ TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
+
+ formatted_raw_ostream FOS(OS);
+ FOS << HotFuncCount << " out of " << TotalFuncCount
+ << " functions with profile ("
+ << format("%.2f%%",
+ (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
+ << ") are considered hot functions";
+ if (!HotFuncMetric.empty())
+ FOS << " (" << HotFuncMetric << ")";
+ FOS << ".\n";
+ FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
+ << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
+
+ for (size_t I = 0; I < ColumnTitle.size(); ++I) {
+ FOS.PadToColumn(ColumnOffset[I]);
+ FOS << ColumnTitle[I];
+ }
+ FOS << "\n";
+
+ uint32_t Count = 0;
+ for (const auto &R : PrintValues) {
+ if (TopNFunctions && (Count++ == TopNFunctions))
+ break;
+ FOS.PadToColumn(ColumnOffset[0]);
+ FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
+ FOS.PadToColumn(ColumnOffset[1]);
+ FOS << R.MaxCount;
+ FOS.PadToColumn(ColumnOffset[2]);
+ FOS << R.EntryCount;
+ FOS.PadToColumn(ColumnOffset[3]);
+ FOS << R.FuncName << "\n";
+ }
+}
+
+static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
+ ProfileSummary &PS, uint32_t TopN,
+ raw_fd_ostream &OS) {
+ using namespace sampleprof;
+
+ const uint32_t HotFuncCutoff = 990000;
+ auto &SummaryVector = PS.getDetailedSummary();
+ uint64_t MinCountThreshold = 0;
+ for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
+ if (SummaryEntry.Cutoff == HotFuncCutoff) {
+ MinCountThreshold = SummaryEntry.MinCount;
+ break;
+ }
+ }
+
+ // Traverse all functions in the profile and keep only hot functions.
+ // The following loop also calculates the sum of total samples of all
+ // functions.
+ std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
+ std::greater<uint64_t>>
+ HotFunc;
+ uint64_t ProfileTotalSample = 0;
+ uint64_t HotFuncSample = 0;
+ uint64_t HotFuncCount = 0;
+
+ for (const auto &I : Profiles) {
+ FuncSampleStats FuncStats;
+ const FunctionSamples &FuncProf = I.second;
+ ProfileTotalSample += FuncProf.getTotalSamples();
+ getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
+
+ if (isFunctionHot(FuncStats, MinCountThreshold)) {
+ HotFunc.emplace(FuncProf.getTotalSamples(),
+ std::make_pair(&(I.second), FuncStats.MaxSample));
+ HotFuncSample += FuncProf.getTotalSamples();
+ ++HotFuncCount;
+ }
+ }
+
+ std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
+ "Entry sample", "Function name"};
+ std::vector<int> ColumnOffset{0, 24, 42, 58};
+ std::string Metric =
+ std::string("max sample >= ") + std::to_string(MinCountThreshold);
+ std::vector<HotFuncInfo> PrintValues;
+ for (const auto &FuncPair : HotFunc) {
+ const FunctionSamples &Func = *FuncPair.second.first;
+ double TotalSamplePercent =
+ (ProfileTotalSample > 0)
+ ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
+ : 0;
+ PrintValues.emplace_back(
+ HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(),
+ TotalSamplePercent, FuncPair.second.second,
+ Func.getHeadSamplesEstimate()));
+ }
+ dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
+ Profiles.size(), HotFuncSample, ProfileTotalSample,
+ Metric, TopN, OS);
+
+ return 0;
+}
+
+static int showSampleProfile(const std::string &Filename, bool ShowCounts,
+ uint32_t TopN, bool ShowAllFunctions,
+ bool ShowDetailedSummary,
+ const std::string &ShowFunction,
+ bool ShowProfileSymbolList,
+ bool ShowSectionInfoOnly, bool ShowHotFuncList,
+ ShowFormat SFormat, raw_fd_ostream &OS) {
+ if (SFormat == ShowFormat::Yaml)
+ exitWithError("YAML output is not supported for sample profiles");
+ using namespace sampleprof;
+ LLVMContext Context;
+ auto ReaderOrErr =
+ SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
+ if (std::error_code EC = ReaderOrErr.getError())
+ exitWithErrorCode(EC, Filename);
+
+ auto Reader = std::move(ReaderOrErr.get());
+ if (ShowSectionInfoOnly) {
+ showSectionInfo(Reader.get(), OS);
+ return 0;
+ }
+
+ if (std::error_code EC = Reader->read())
+ exitWithErrorCode(EC, Filename);
+
+ if (ShowAllFunctions || ShowFunction.empty()) {
+ if (SFormat == ShowFormat::Json)
+ Reader->dumpJson(OS);
+ else
+ Reader->dump(OS);
+ } else {
+ if (SFormat == ShowFormat::Json)
+ exitWithError(
+ "the JSON format is supported only when all functions are to "
+ "be printed");
+
+ // TODO: parse context string to support filtering by contexts.
+ Reader->dumpFunctionProfile(StringRef(ShowFunction), OS);
+ }
+
+ if (ShowProfileSymbolList) {
+ std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
+ Reader->getProfileSymbolList();
+ ReaderList->dump(OS);
+ }
+
+ if (ShowDetailedSummary) {
+ auto &PS = Reader->getSummary();
+ PS.printSummary(OS);
+ PS.printDetailedSummary(OS);
+ }
+
+ if (ShowHotFuncList || TopN)
+ showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS);
+
+ return 0;
+}
+
+static int showMemProfProfile(const std::string &Filename,
+ const std::string &ProfiledBinary,
+ ShowFormat SFormat, raw_fd_ostream &OS) {
+ if (SFormat == ShowFormat::Json)
+ exitWithError("JSON output is not supported for MemProf");
+ auto ReaderOr = llvm::memprof::RawMemProfReader::create(
+ Filename, ProfiledBinary, /*KeepNames=*/true);
+ if (Error E = ReaderOr.takeError())
+ // Since the error can be related to the profile or the binary we do not
+ // pass whence. Instead additional context is provided where necessary in
+ // the error message.
+ exitWithError(std::move(E), /*Whence*/ "");
+
+ std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
+ ReaderOr.get().release());
+
+ Reader->printYAML(OS);
+ return 0;
+}
+
+static int showDebugInfoCorrelation(const std::string &Filename,
+ bool ShowDetailedSummary,
+ bool ShowProfileSymbolList,
+ ShowFormat SFormat, raw_fd_ostream &OS) {
+ if (SFormat == ShowFormat::Json)
+ exitWithError("JSON output is not supported for debug info correlation");
+ std::unique_ptr<InstrProfCorrelator> Correlator;
+ if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator))
+ exitWithError(std::move(Err), Filename);
+ if (SFormat == ShowFormat::Yaml) {
+ if (auto Err = Correlator->dumpYaml(OS))
+ exitWithError(std::move(Err), Filename);
+ return 0;
+ }
+
+ if (auto Err = Correlator->correlateProfileData())
+ exitWithError(std::move(Err), Filename);
+
+ InstrProfSymtab Symtab;
+ if (auto Err = Symtab.create(
+ StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
+ exitWithError(std::move(Err), Filename);
+
+ if (ShowProfileSymbolList)
+ Symtab.dumpNames(OS);
+ // TODO: Read "Profile Data Type" from debug info to compute and show how many
+ // counters the section holds.
+ if (ShowDetailedSummary)
+ OS << "Counters section size: 0x"
+ << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
+ OS << "Found " << Correlator->getDataSize() << " functions\n";
+
+ return 0;
+}
+
+static int show_main(int argc, const char *argv[]) {
+ cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"));
+
+ cl::opt<bool> ShowCounts("counts", cl::init(false),
+ cl::desc("Show counter values for shown functions"));
+ cl::opt<ShowFormat> SFormat(
+ "show-format", cl::init(ShowFormat::Text),
+ cl::desc("Emit output in the selected format if supported"),
+ cl::values(clEnumValN(ShowFormat::Text, "text",
+ "emit normal text output (default)"),
+ clEnumValN(ShowFormat::Json, "json", "emit JSON"),
+ clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML")));
+ // TODO: Consider replacing this with `--show-format=text-encoding`.
+ cl::opt<bool> TextFormat(
+ "text", cl::init(false),
+ cl::desc("Show instr profile data in text dump format"));
+ cl::opt<bool> JsonFormat(
+ "json", cl::desc("Show sample profile data in the JSON format "
+ "(deprecated, please use --show-format=json)"));
+ cl::opt<bool> ShowIndirectCallTargets(
+ "ic-targets", cl::init(false),
+ cl::desc("Show indirect call site target values for shown functions"));
+ cl::opt<bool> ShowMemOPSizes(
+ "memop-sizes", cl::init(false),
+ cl::desc("Show the profiled sizes of the memory intrinsic calls "
+ "for shown functions"));
+ cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
+ cl::desc("Show detailed profile summary"));
+ cl::list<uint32_t> DetailedSummaryCutoffs(
+ cl::CommaSeparated, "detailed-summary-cutoffs",
+ cl::desc(
+ "Cutoff percentages (times 10000) for generating detailed summary"),
+ cl::value_desc("800000,901000,999999"));
+ cl::opt<bool> ShowHotFuncList(
+ "hot-func-list", cl::init(false),
+ cl::desc("Show profile summary of a list of hot functions"));
+ cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
+ cl::desc("Details for every function"));
+ cl::opt<bool> ShowCS("showcs", cl::init(false),
+ cl::desc("Show context sensitive counts"));
+ cl::opt<std::string> ShowFunction("function",
+ cl::desc("Details for matching functions"));
+
+ cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
+ cl::init("-"), cl::desc("Output file"));
+ cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
+ cl::aliasopt(OutputFilename));
+ cl::opt<ProfileKinds> ProfileKind(
+ cl::desc("Profile kind:"), cl::init(instr),
+ cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
+ clEnumVal(sample, "Sample profile"),
+ clEnumVal(memory, "MemProf memory access profile")));
+ cl::opt<uint32_t> TopNFunctions(
+ "topn", cl::init(0),
+ cl::desc("Show the list of functions with the largest internal counts"));
+ cl::opt<uint32_t> ValueCutoff(
+ "value-cutoff", cl::init(0),
+ cl::desc("Set the count value cutoff. Functions with the maximum count "
+ "less than this value will not be printed out. (Default is 0)"));
+ cl::opt<bool> OnlyListBelow(
+ "list-below-cutoff", cl::init(false),
+ cl::desc("Only output names of functions whose max count values are "
+ "below the cutoff value"));
+ cl::opt<bool> ShowProfileSymbolList(
+ "show-prof-sym-list", cl::init(false),
+ cl::desc("Show profile symbol list if it exists in the profile. "));
+ cl::opt<bool> ShowSectionInfoOnly(
+ "show-sec-info-only", cl::init(false),
+ cl::desc("Show the information of each section in the sample profile. "
+ "The flag is only usable when the sample profile is in "
+ "extbinary format"));
+ cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
+ cl::desc("Show binary ids in the profile. "));
+ cl::opt<std::string> DebugInfoFilename(
+ "debug-info", cl::init(""),
+ cl::desc("Read and extract profile metadata from debug info and show "
+ "the functions it found."));
+ cl::opt<bool> ShowCovered(
+ "covered", cl::init(false),
+ cl::desc("Show only the functions that have been executed."));
+ cl::opt<std::string> ProfiledBinary(
+ "profiled-binary", cl::init(""),
+ cl::desc("Path to binary from which the profile was collected."));
+ cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false),
+ cl::desc("Show profile version. "));
+ cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
+
+ if (Filename.empty() && DebugInfoFilename.empty())
+ exitWithError(
+ "the positional argument '<profdata-file>' is required unless '--" +
+ DebugInfoFilename.ArgStr + "' is provided");
+
+ if (Filename == OutputFilename) {
+ errs() << sys::path::filename(argv[0])
+ << ": Input file name cannot be the same as the output file name!\n";
+ return 1;
+ }
+ if (JsonFormat)
+ SFormat = ShowFormat::Json;
+
+ std::error_code EC;
+ raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
+ if (EC)
+ exitWithErrorCode(EC, OutputFilename);
+
+ if (ShowAllFunctions && !ShowFunction.empty())
+ WithColor::warning() << "-function argument ignored: showing all functions\n";
+
+ if (!DebugInfoFilename.empty())
+ return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary,
+ ShowProfileSymbolList, SFormat, OS);
+
+ if (ProfileKind == instr)
+ return showInstrProfile(
+ Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
+ ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
+ ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
+ TextFormat, ShowBinaryIds, ShowCovered, ShowProfileVersion, SFormat,
+ OS);
+ if (ProfileKind == sample)
+ return showSampleProfile(Filename, ShowCounts, TopNFunctions,
+ ShowAllFunctions, ShowDetailedSummary,
+ ShowFunction, ShowProfileSymbolList,
+ ShowSectionInfoOnly, ShowHotFuncList, SFormat, OS);
+ return showMemProfProfile(Filename, ProfiledBinary, SFormat, OS);
+}
+
+int main(int argc, const char *argv[]) {
+ InitLLVM X(argc, argv);
+
+ StringRef ProgName(sys::path::filename(argv[0]));
+ if (argc > 1) {
+ int (*func)(int, const char *[]) = nullptr;
+
+ if (strcmp(argv[1], "merge") == 0)
+ func = merge_main;
+ else if (strcmp(argv[1], "show") == 0)
+ func = show_main;
+ else if (strcmp(argv[1], "overlap") == 0)
+ func = overlap_main;
+
+ if (func) {
+ std::string Invocation(ProgName.str() + " " + argv[1]);
+ argv[1] = Invocation.c_str();
+ return func(argc - 1, argv + 1);
+ }
+
+ if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
+ strcmp(argv[1], "--help") == 0) {
+
+ errs() << "OVERVIEW: LLVM profile data tools\n\n"
+ << "USAGE: " << ProgName << " <command> [args...]\n"
+ << "USAGE: " << ProgName << " <command> -help\n\n"
+ << "See each individual command --help for more details.\n"
+ << "Available commands: merge, show, overlap\n";
+ return 0;
+ }
+ }
+
+ if (argc < 2)
+ errs() << ProgName << ": No command specified!\n";
+ else
+ errs() << ProgName << ": Unknown command!\n";
+
+ errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
+ return 1;
+}